

Cynthia Vodopivec Coleto Creek Power, LLC Luminant 6555 Sierra Dr. Irving, TX 75039

November 30, 2020

Sent via email

Mr. Andrew R. Wheeler, EPA Administrator Environmental Protection Agency 1200 Pennsylvania Avenue, N.W. Mail Code 5304-P Washington, DC 20460

Re: Coleto Creek Power Plant Alternative Closure Demonstration

Dear Administrator Wheeler:

Coleto Creek Power, LLC (CCP) hereby submits this request to the U.S. Environmental Protection Agency (EPA) for approval of a site-specific alternative deadline to initiate closure pursuant to 40 C.F.R. § 257.103(f)(2) for the Primary Ash Pond located at the Coleto Creek Power Plant near Fannin, Texas. CCP is requesting an extension pursuant to 40 C.F.R. § 257.103(f)(2) so that the Primary Ash Pond may continue to receive CCR and non-CCR wastestreams after April 11, 2021, and complete closure no later than October 17, 2028.

CCP has elected to withdraw the alternate closure demonstration that was previously submitted to EPA on September 29, 2020 pursuant to 40 C.F.R. § 257.103(f)(1) and replace it with the enclosed demonstration prepared by Burns & McDonnell pursuant to 40 C.F.R. § 257.103(f)(2). This demonstration addresses all of the criteria in 40 C.F.R. § 257.103(f)(2)(i)-(iv) and contains the documentation required by 40 C.F.R. § 257.103(f)(2)(v). As allowed by the agency, in lieu of hard copies of these documents, electronic files were submitted to Kirsten Hillyer, Frank Behan, and Richard Huggins via email. If you have any questions regarding this submittal, please contact Renee Collins at 214-875-8338 or renee.collins@luminant.com. The demonstration is also available on CCP's publicly available website: https://www.luminant.com/ccr/

Sincerely,

Cynthia Vodopivec

Cyrollin E Way

VP - Environmental Health & Safety

Enclosure

cc: Kirsten Hillyer Frank Behan Richard Huggins

Coleto Creek CCR Surface Impoundment Demonstration for a Site-Specific Alternative to Initiation of Closure Deadline

Coleto Creek Power, LLC

Coleto Creek Power Plant Project No. 122702

Revision 0 11/30/2020

Coleto Creek CCR Surface Impoundment Demonstration for a Site-Specific Alternative to Initiation of Closure Deadline

prepared for

Coleto Creek Power, LLC Coleto Creek Power Plant Fannin, Texas

Project No. 122702

Revision 0 11/30/2020

prepared by

Burns & McDonnell Engineering Company, Inc. Kansas City, Missouri

INDEX AND CERTIFICATION

Coleto Creek Power, LLC Coleto Creek CCR Surface Impoundment Demonstration for a Site-Specific Alternative to Initiation of Closure Deadline Project No. 122702

Report Index

Chapter		Number
Number	Chapter Title	of Pages
1.0	Executive Summary	1
2.0	Introduction	2
3.0	Documentation of No Alternative Disposal Capacity	7
6.0	Documentation of Closure Completion Timeframe	4
7.0	Conclusion	1
Appendix A	Site Plan	1

Certification

I hereby certify, as a Professional Engineer in the state of Texas, that the information in this document as noted in the above Report Index was assembled under my direct personal charge. This report is not intended or represented to be suitable for reuse by the Coleto Creek Power, LLC or others without specific verification or adaptation by the Engineer.

RANDELL LEE SEDLACEK

99056

10ENSE

11/30/20

Randell Lee Sedlacek, P.E. (Texas License No. 99506)

Date: 11/30/20

Burns & McDonnell Engineering Company, Inc. Texas Registered Engineering Firm F-845

TABLE OF CONTENTS

		<u>Pa</u>	<u>ige No.</u>
1.0	EXE	CUTIVE SUMMARY	1-1
2.0	INTF	RODUCTION	2-1
3.0		CUMENTATION OF NO ALTERNATIVE DISPOSAL CAPACITY	
	3.1	Site-Layout and Wastewater Processes	
	3.2	CCR Wastestreams	
	3.3	Non-CCR Wastestreams	3-5
4.0	RIS	K MITIGATION PLAN	4-1
5.0	DOC	CUMENTATION AND CERTIFICATION OF COMPLIANCE	5-1
	5.1	Owner's Certification of Compliance - § 257.103(f)(2)(v)(C)(1)	5-1
	5.2	Visual representation of hydrogeologic information - § 257.103(f)(2)(v)(C	
	5.3	Groundwater monitoring results - § 257.103(f)(2)(v)(C)(3)	5-2
	5.4	Description of site hydrogeology including stratigraphic cross-sections -	5.0
	5.5	§ 257.103(f)(2)(v)(C)(4)	
	5.6	Remedy selection progress report - $\S 257.103(f)(2)(v)(C)(3)$	
	5.7	Structural stability assessment - \S 257.103(f)(2)(v)(C)(7)	5-2
	5.8	Safety factor assessment - § 257.103(f)(2)(v)(C)(8)	5-2
6.0	DOC	CUMENTATION OF CLOSURE COMPLETION TIMEFRAME	6-1
7.0	CON	ICLUSION	7-1
		A – SITE PLAN AND NEARBY LANDFILLS B – WATER BALANCE DIAGRAM	
	. •	ENT 1 – RISK MITIGATION PLAN	
ATT	ACHM	ENT 2 – MAP OF GROUNDWATER MONITORING WELL LOCATIONS	
ATT	ACHM	ENT 3 – WELL CONSTRUCTION DIAGRAMS AND DRILLING LOGS	
ATT	ACHM	ENT 4 – MAPS OF THE DIRECTION OF GROUNDWATER FLOW	
ATT	ACHM	ENT 5 – TABLES SUMMARIZING CONSTITUENT	
		CONCENTRATIONS AT EACH MONITORING WELL	
ATT	ACHM	ENT 6 – SITE HYDROGEOLOGY AND STRATIGRAPHIC CROSS-	

ATTACHMENT 7 – STRUCTURAL STABILITY AND SAFETY FACTOR ASSESSMENTS ATTACHMENT 8 – CLOSURE PLAN

LIST OF TABLES

	Page No.
Table 3-1: Coleto CCR Wastestreams	3-2
Table 3-2: Coleto Non-CCR Wastestreams	
Table 3-3: Non-CCR Wastestream Offsite Disposal	
Table 6-1: Coleto Primary Ash Pond Closure Schedule	6-2

LIST OF ABBREVIATIONS

Abbreviation <u>Term/Phrase/Name</u>

CCP Coleto Creek Power, LLC

CCR Coal Combustion Residual

CFR Code of Federal Regulations

Coleto Creek Power Plant

EPA Environmental Protection Agency

GWPS Groundwater Protection Standards

POTW Publicly Owned Treatment Works

PSD Prevention of Significant Deterioration

RCRA Resource Conservation and Recovery Act

TPDES Texas Pollutant Discharge Elimination System

i

1.0 EXECUTIVE SUMMARY

Coleto Creek Power, LLC (CCP) submits this request to the U.S. Environmental Protection Agency (EPA) for approval of a site-specific alternative deadline to initiate closure pursuant to 40 C.F.R. § 257.103(f)(2) —"Permanent Cessation of a Coal-Fired Boiler(s) by a Date Certain"— for the Primary Ash Pond located at the Coleto Creek Power Plant (Coleto) in Texas. The Primary Ash Pond is a 190-acre CCR surface impoundment used to manage CCR and non-CCR wastestreams at Coleto. As discussed herein, the boiler at the station will cease coal-fired operations no later than July 17, 2027, and the impoundment will complete closure no later than October 17, 2028. Therefore, CCP is requesting an extension pursuant to 40 C.F.R. § 257.103(f)(2) so that the Primary Ash Pond may continue to receive CCR and non-CCR waste streams after April 11, 2021, and complete closure no later than October 17, 2028.

2.0 INTRODUCTION

Coleto is a 650-megawatt, single unit coal-fueled electrical generating facility located in Fannin, Texas. The Coleto Creek facility includes a CCR unit (the Primary Ash Pond) that is the subject of this demonstration. Coleto uses the 190-acre Primary Ash Pond to manage sluiced bottom ash, economizer ash, and mill rejects, as well as non-marketable dry fly ash and non-CCR wastewaters. The impoundment was constructed between 1976 and 1977 and has been in service for the life of the plant. The boiler is scheduled to cease coal-fired operations no later than July 17, 2027. Fly ash is currently collected dry and normally hauled offsite for beneficial use; however, periodically, the market will not accept the fly ash due to varying properties or seasonal demand, in which case the ash is sluiced from the storage silo and disposed of in the Primary Ash Pond. The various non-CCR wastewaters received originate from the demineralizer sump (including, reverse osmosis reject and demineralizer regeneration flows) and the boiler sump (including flows from laboratory drains, hopper overflow (ash contact/quench water), boiler blowdown condensate polisher regeneration, water pretreatment filter backwash, oil/water separator discharge, transformer area sump, stormwater from ash piping trench, fabric filter area wash, air heater wash, and boiler wash). A site plan is provided in Appendix A, and the plant water balance diagram is included in Appendix B.

On April 17, 2015, the Environmental Protection Agency (EPA) issued the federal Coal Combustion Residual (CCR) Rule, 40 C.F.R. Part 257, Subpart D, to regulate the disposal of CCR materials generated at coal-fueled units. The rule is being administered under Subtitle D of the Resource Conservation and Recovery Act (RCRA, 42 U.S.C. § 6901 et seq.). On August 28, 2020, the EPA Administrator issued revisions to the CCR Rule that require all unlined surface impoundments to initiate closure by April 11, 2021, unless an alternative deadline is requested and approved. 40 C.F.R. § 257.101(a)(1) (85 Fed. Reg. 53,516 (Aug. 28, 2020)). Specifically, owners and operators of a CCR surface impoundment may continue to receive CCR and non-CCR wastestreams if the facility will cease operation of the coal-fired boiler(s) and complete closure of the impoundments within certain specified timeframes. 40 C.F.R. § 257.103(f)(2). To qualify for an alternative closure deadline under § 257.103(f)(2), a facility must meet the following four criteria:

- 1. § 257.103(f)(2)(i) No alternative disposal capacity is available on-site or off-site. An increase in costs or the inconvenience of existing capacity is not sufficient to support qualification.
- 2. § 257.103(f)(2)(ii) Potential risks to human health and the environment from the continued operation of the CCR surface impoundment have been adequately mitigated;
- 3. § 257.103(f)(2)(iii) The facility is in compliance with the CCR rule, including the requirement to conduct any necessary corrective action; and

- 4. § 257.103(f)(2)(iv) The coal-fired boilers must cease operation and closure of the impoundment must be completed within the following timeframes:
 - a. For a CCR surface impoundment that is 40 acres or smaller, the coal-fired boiler(s) must cease operation and the CCR surface impoundment must complete closure no later than October 17, 2023.
 - b. For a CCR surface impoundment that is larger than 40 acres, the coal-fired boiler(s) must cease operation, and the CCR surface impoundment must complete closure no later than October 17, 2028.

Section 257.103(f)(2)(v) sets out the documentation that must be provided to EPA to demonstrate that the four criteria set out above have been met. Therefore, this demonstration is organized based on the documentation requirements of $\S\S 257.103(f)(2)(v)(A) - (D)$.

3.0 DOCUMENTATION OF NO ALTERNATIVE DISPOSAL CAPACITY

To demonstrate that the criteria in § 257.103(f)(2)(i) has been met, the following provides documentation that no alternative disposal capacity is currently available on-site or off-site for each CCR and non-CCR wastestream that CCP seeks to continue placing into the Primary Ash Pond after April 11, 2021. Consistent with the regulations, neither an increase in costs nor the inconvenience of existing capacity was used to support qualification under this criteria. Instead, as EPA explained in the preamble to the proposed Part A revisions, "it would be illogical to require [] facilities [ceasing power generation] to construct new capacity to manage CCR and non-CCR wastestreams." 84 Fed. Reg. 65,941, 65,956 (Dec. 2, 2019). EPA again reiterated in the preamble to the final revisions that "[i]n contrast to the provision under § 257.103(f)(1), the owner or operator does not need to develop alternative capacity because of the impending closure of the coal fired boiler. Since the coal-fired boiler will shortly cease power generation, it would be illogical to require these facilities to construct new capacity to manage CCR and non-CCR wastestreams." 85 Fed. Reg. at 53,547. Thus, new construction or the development of new alternative disposal capacity was not considered a viable option for any wastestream discussed below.

3.1 Site-Layout and Wastewater Processes

As shown on Figure 1 in Appendix A, Coleto Creek is bounded by Sulfur Creek to the north, the Coleto Creek Reservoir to the east, and Perdido Creek to the south. The western boundary is formed by FM 2987 (farm to market road). The Ash Pond receives both the CCR sluice flows and a portion of the non-CCR wastewater flows onsite. The plant process flows are shown in Appendix B. The remaining impoundments onsite (the Secondary Pond, Evaporation Pond and Coal Pile Runoff Pond) are not authorized to receive CCR material and are not large enough to independently treat the total volume of the plant process water flows.

3.2 CCR Wastestreams

CCP evaluated each CCR wastestream placed in the Primary Ash Pond at Coleto. For the reasons discussed below in Table 3-1, each of the following CCR wastestreams must continue to be placed in the Primary Ash Pond due to lack of alternative capacity both on and off-site.

Table 3-1: Coleto CCR Wastestreams

CCR Wastestreams	Estimated Average Flow (MGD)	Alternative Disposal Capacity Currently Available? YES/NO	Details
Bottom Ash, Economizer Ash, and non- CCR mill rejects Sluice	1.26	NO	Alternative capacity is not currently available on or off-site and would have to be developed. Alternative capacity would need to be designed, permitted, and installed. Off-site alternative capacity would include development of on-site temporary tanks to support transport of sluice material offsite for disposal. Refer to the discussion below for a more detailed evaluation on the development of alternative capacity.
,			Some bottom ash/economizer ash/mill reject materials removed from the Primary Ash Pond for off-site beneficial reuse (~21,000 tons in 2019); however, the transport water remains within the pond.
Dry Fly Ash	Normally Dry Handled with Intermittent Sluices from Silo for Disposal (0.57 when sluicing) ~550 tons/year to Primary Ash Pond based on 2019 rates	NO	The fly ash is collected dry and conveyed to a storage silo near the Primary Ash Pond. Normally, the ash is sent off-site for beneficial reuse. Periodically, the market will not accept the ash due to varying properties or seasonal demand, in which case the ash is sluiced from the silo to the Primary Ash Pond. No conditioning equipment is currently installed to allow for trucking the material offsite for disposal. The existing sluicing system must be removed from service no later than December 31, 2023, to comply with the ELG Rule. CCP must continue its beneficial use marketing efforts to allow for 100% beneficial reuse or install a pug mill to condition any fly ash that must be disposed after that date. CCP does not have a CCR landfill or another CCR surface impoundment located onsite that is available or ready to accept this material. Consequently, there are currently no on-site alternatives for this wastestream, and alternative

CCP evaluated the following on-site and off-site alternative capacity options for these CCR wastestreams:

- Bottom ash, economizer ash, and non-CCR mill rejects sluice (1.26 MGD):
 - On-site alternative capacity is currently not available and would need to be developed. The remaining impoundments onsite (Coal Pile Runoff Pond, Evaporation Pond, and the Secondary Pond) are not authorized to receive the CCR materials.

- o Development of on-site alternative capacity would require the design, permitting, and installation of a new dry ash handling system or a treatment system including CCR ponds, clarifiers, and/or storage tank(s), to provide the necessary retention time to meet the TPDES permit limits. The environmental permitting might require a modification to the site's current individual TPDES permit (if rerouting of this wastestream to another outfall), general TPDES stormwater construction permit (includes evaluation of threatened and endangered species and historic preservation assessments), and an updated Stormwater Pollution Prevention Plan (SWPPP) at a minimum. Based on our experience with environmental permitting, this effort could require two to four years.
- Off-site alternative capacity is currently not available and would need to be developed. Developed off-site alternative capacity would consist of both temporary on-site wet storage (frac tanks), and off-site transportation, via tanker trucks. With an average daily flow of 1.26 MGD of sluice water, approximately 60 frac tanks and 168 daily tanker trucks (~7500 gallons per truck to maintain DOT weight restrictions) would be required, if a Publicly Owned Treatment Works (POTW) could be identified to receive it. The daily tanker truck traffic would result in increased potential for safety and noise impacts and further increases in fugitive dust, greenhouse gas emissions and carbon footprint which may require a Prevention of Significant Deterioration (PSD) permit and modification under the Clean Air Act Permit Program if the calculated increases in emissions are over the PSD limits. Setting up contractual arrangements for a local POTW to accept the wastewater would prove to be difficult since this amount of wastewater would potentially upset their treatment systems causing them to exceed their TPDES discharge limits. The potential for leaks/spills from the tank system or transportation of the wastewater offsite exist as well. Furthermore, the temporary wet storage needed to accommodate off-site disposal would require reconfiguration, design, installation, and associated environmental permitting which would require a minimum of two years to implement. For all of these reasons, CCP has determined that offsite disposal is not feasible for these flows at Coleto.
- Fly ash (0.57 MGD when sluicing; ~550 tons/year based on 2019 rates):
 - On-site alternative capacity is currently not available and would need to be developed. The remaining impoundments onsite (Coal Pile Runoff Pond, Evaporation Pond, and the Secondary Pond) are not authorized to receive the CCR materials.
 - Development of on-site alternative capacity would require the design, permitting, and installation of a new CCR landfill and new conditioning equipment to support hauling and

- disposal at the landfill. Based on our experience with environmental permitting, this effort could require a minimum of three to four years.
- Fly ash transport water cannot be disposed offsite per 40 C.F.R. § 423.16(f). The sluicing system is the only installed method onsite to allow for disposal of dry fly ash, and the Primary Ash Pond is the only CCR surface impoundment onsite to receive this wastestream.
- Off-site alternative capacity for dry fly ash is currently not available and would need to be developed. It should be noted that CCP is currently marketing 99% of the fly ash for beneficial reuse off-site. CCP is focused on expanding beneficial use marketing efforts to eliminate the sluicing of fly ash at Coleto prior to December 31, 2023. As a result, fly ash disposal is projected to be minimal, both in 2020 and over the next several years.
- Developed off-site alternative disposal capacity for fly ash would consist of off-site transportation to a contracted landfill and the installation of conditioning equipment on-site to prepare the material for offsite disposal. The fly ash would likely need to be conditioned (@ 10% moisture) in an on-site pug mill due to fugitive dusting concerns. Low-sulfur Powder River Basin Class C fly ash develops cementitious characteristics when conditioned with water rather quickly. Because of this, off-site transportation must be limited to less than a one-hour haul time, or within 40 miles of the station, to prevent the fly ash from setting up and hardening and causing adverse disposal / unloading issues at the offsite landfill. There is one landfill within approximately 40 miles of the station (see Figure 2 in Appendix A), so CCP is continuing to have discussions with these offsite landfills to determine if they have the capacity and the infrastructure to receive any future fly ash for disposal. This will also include efforts to characterize the waste. CCP will update EPA in forthcoming progress reports if offsite disposal capacity becomes available.

As stated previously, because CCP has elected to pursue the option to permanently cease coal-fired operations of the boiler no later than July 17, 2027, developing alternative disposal capacity is "illogical," to use EPA's words, and also counterproductive to the work to cease coal-fired operations of the boiler and close the impoundment. As long as CCP continues to wet handle the bottom ash, economizer ash, and mill reject materials, there are no other onsite CCR impoundments available to receive and treat these flows and it is not feasible to dispose of the wet-handled material offsite. As EPA explained in the preamble of the 2015 rule, it is not possible for sites that sluice CCR material to an impoundment to eliminate the impoundment and dispose of the material offsite. *See* 80 Fed. Reg. 21,301, 21,423 (Apr. 17, 2015) ("[W]hile it is possible to transport dry ash off-site to [an] alternate disposal facility that is simply not feasible for

wet-generated CCR. Nor can facilities immediately convert to dry handling systems."). As a result, the conditions at Coleto satisfy the demonstration requirement in § 257.103(f)(2)(i).

Consequently, in order to continue to operate and generate electricity, Coleto must continue to use the 190-acre Primary Ash Pond to manage the CCR wastestreams discussed above. Accordingly, the non-marketable fly ash must be placed in the only available onsite disposal location (i.e., the Primary Ash Pond) when not hauled offsite for beneficial use due to seasonal market impacts.

3.3 Non-CCR Wastestreams

CCP evaluated each non-CCR wastestream placed in the Primary Ash Pond at Coleto. For the reasons discussed below in Table 3-2, each of the following non-CCR wastestreams must continue to be placed in the Primary Ash Pond due to lack of alternative capacity both on and off-site.

Table 3-2: Coleto Non-CCR Wastestreams

Non-CCR Wastestreams	Estimated Average Flow (MGD)	Alternative Disposal Capacity Currently Available? YES/NO	Details
Demineralizer Sump Discharge (including Demineralizer Regeneration Flows and RO Reject)	0.07	NO	On-site alternative capacity would need to be designed, permitted, and installed. Off-site alternative capacity would include development of on-site temporary tanks and transporting of this sluice material offsite for disposal. See discussion below for more details.
Boiler Sump Discharges (normal operation)	1.56	NO	While onsite infrastructure exists to route this flow to the Evaporation Pond, the capacity of the Evaporation Pond would be exceeded by the addition of these flow rates. The average annual precipitation and evaporation rates for the site are 41 and 69 inches, respectively. The coal pile runoff is already routed to the Evaporation Pond, and consequently this pond is only capable of receiving approximately 5% of this boiler sump discharge without having the permit modified to allow for discharge from this pond. Such a modification would require sampling, wastestream characterization, and likely anti-degradation studies to generate a new outfall to Coleto Creek Reservoir. Off-site alternative capacity would include development of on-site temporary tanks and transporting of this sluice material offsite for disposal. See discussion below for more details.

Non-CCR Wastestreams	Estimated Average Flow (MGD)	Alternative Disposal Capacity Currently Available? YES/NO	Details
Boiler Sump Discharges (during outage wash events)	~1.2 million gallons per outage	YES	These wastestreams will be rerouted to the existing Evaporation Pond prior to the April 11, 2021 deadline.

CCP evaluated on-site and off-site alternative capacity options for the non-CCR wastestreams. Development of on-site alternative capacity would require the design, permitting, and installation of a new treatment system including non-CCR ponds, clarifiers, and/or storage tank(s) to provide the necessary retention time for TSS removal to meet the TPDES permit limits. For the demineralizer sump discharge, this would include installing a minimum of 1,000 feet of additional piping, and potentially replacing the demineralizer sump pumps and upsizing of the power feeds to reroute to the existing Secondary Pond and/or Evaporation Pond. A neutralization tank may also be required depending on the results of the characterization. The environmental permitting might include a modification to the current individual TPDES permit (if rerouting of this wastestream to another outfall), general TPDES stormwater construction permit (includes evaluation of threatened and endangered species and historic preservation assessments), a construction & operating permit, and a SWPPP at a minimum which is expected to require two to four years to implement.

Development of off-site alternative capacity would consist of both temporary on-site wet storage (frac tanks) and off-site transportation via tanker trucks, assuming a local POTW could be identified to receive these streams. The required daily frac tanks and tanker trucks (~7,500 gallons per truck to maintain DOT weight restrictions) for each wastestream is provided in Table 3-3. The daily tanker truck traffic would result in increased potential for safety and noise impacts and further increases in fugitive dust, greenhouse gas emissions and carbon footprint which may require a PSD permit and modification under the Clean Air Act Permit Program if the calculated increases in emissions are over the PSD limits. Setting up arrangements for a local POTW to accept this wastewater could prove to be difficult if this amount of wastewater would upset their treatment systems, causing them to exceed their TPDES discharge limits. CCP is continuing to have discussions with local POTW's to determine if they have the capacity and the infrastructure to handle these daily volumes of wastewater. This will likely also include efforts to characterize the waste, and installation of a chemical treatment/neutralization process prior to hauling the demineralizer sump discharge offsite for disposal. CCP will update EPA in forthcoming progress reports if

offsite disposal capacity becomes available. The potential for leaks/spills from the tank system or transportation of the wastewater offsite does also exist. Furthermore, the temporary wet storage needed to accommodate off-site disposal would require reconfiguration, design, installation, and associated environmental permitting which would require a minimum of two years to implement. For all of these reasons, CCP has determined that offsite disposal is not feasible for these flows at Coleto at this time.

Table 3-3: Non-CCR Wastestream Offsite Disposal

Non-CCR Wastestreams	Estimated Flow (MGD)	No. of Frac Tanks required (21,000 gallons each)	No. of Trucks required per day (7,500 gallons each)
Demineralizer Sump Discharge	0.07	4	10
Boiler Sump Discharges (normal operation)	1.56	75	208
	Total	79	218

As stated previously, since CCP has elected to pursue the option to permanently cease the use of the coal fired boilers by a certain date, developing alternative disposal capacity is "illogical," to use EPA's words, and also counterproductive to the work to cease coal-fired operations of the boilers and close the impoundment. There is currently no available infrastructure at the plant to support reroute of these flows. For the reasons discussed above, each of the non-CCR wastestreams (except the outage wash flows) must continue to be placed in the Primary Ash Pond due to lack of alternative capacity both on and off-site. Consequently, in order to continue to operate and generate electricity, Coleto must continue to use the 190-acre Primary Ash Pond to manage the non-CCR wastestreams discussed above.

4.0 RISK MITIGATION PLAN

To demonstrate that the criteria in § 257.103(f)(2)(ii) has been met, CCP has prepared and attached a Risk Mitigation Plan for the Coleto Primary Ash Pond (see Attachment 1). Per § 257.103(f)(2)(v)(B), this Risk Mitigation Plan is only required for the specific CCR Unit(s) that are the subject of this demonstration.

5.0 DOCUMENTATION AND CERTIFICATION OF COMPLIANCE

In the Part A rule preamble, EPA reiterates that compliance with the CCR rule is a prerequisite to qualifying for an alternative closure extension, as it "provides some guarantee that the risks at the facility are properly managed and adequately mitigated." 85 Fed. Reg. at 53,543. EPA further stated that it "must be able to affirmatively conclude that facility meets this criterion prior to any continued operation." 85 Fed. Reg. at 53,543. Accordingly, EPA "will review a facility's current compliance with the requirements governing groundwater monitoring systems." 85 Fed. Reg. at 53,543. In addition, EPA will also "require and examine a facility's corrective action documentation, structural stability documents and other pertinent compliance information." 85 Fed. Reg. at 53,543. Therefore, EPA is requiring a certification of compliance and specific compliance documentation be submitted as part of the demonstration. 40 C.F.R. § 257.103(f)(2)(v)(C).

The Coleto Creek facility includes a CCR unit (the Primary Ash Pond) that is the subject of this demonstration. To demonstrate that the criteria in \$257.103(f)(2)(iii) has been met, CCP is submitting the following information as required by \$257.103(f)(2)(v)(C):

5.1 Owner's Certification of Compliance - § 257.103(f)(2)(v)(C)(1)

I hereby certify that, based on my inquiry of those persons who are immediately responsible for compliance with environmental regulations for Coleto Creek, the facility is in compliance with all of the requirements contained in 40 C.F.R. Part 257, Subpart D – Standards for the Disposal of Coal Combustion Residuals in Landfills and Surface Impoundments. Coleto Creek's CCR compliance website is up-to-date and contains all the necessary documentation and notification postings.

On behalf of CCP:

Cynthia Vodopivec

VP - Environmental Health & Safety

inthin E ebdy

November 30, 2020

5.2 Visual representation of hydrogeologic information - § 257.103(f)(2)(v)(C)(2)

Consistent with the requirements of $\S 257.103(f)(2)(v)(C)(2)(i) - (iii)$, CCP has attached the following items to this demonstration:

- Map(s) of groundwater monitoring well locations in relation to the CCR unit (Attachment 2)
- Well construction diagrams and drilling logs for all groundwater monitoring wells (Attachment 3)

 Maps that characterize the direction of groundwater flow accounting for seasonal variations (Attachment 4)

5.3 Groundwater monitoring results - § 257.103(f)(2)(v)(C)(3)

Tables summarizing constituent concentrations at each groundwater monitoring well through the first 2020 semi-annual monitoring period are included as Attachment 5.

5.4 Description of site hydrogeology including stratigraphic cross-sections - $\S 257.103(f)(2)(v)(C)(4)$

A description of the site hydrogeology and stratigraphic cross-sections of the site are included as Attachment 6.

5.5 Corrective measures assessment - § 257.103(f)(2)(v)(C)(5)

Background sampling began at the Primary Ash Pond in March of 2017 and continued through July for eight rounds of background sampling. The first semiannual detection monitoring samples were collected in November 2017. The first assessment monitoring samples were collected in June 2018. The results, through the first 2020 semi-annual monitoring period, indicate the Primary Ash Pond is currently in assessment monitoring, with no exceedances of the Appendix IV parameters recorded. Accordingly, an assessment of corrective measures is not currently required. Coleto will continue to conduct groundwater monitoring in accordance with all state and federal requirements.

5.6 Remedy selection progress report - § 257.103(f)(2)(v)(C)(6)

As noted above, an assessment of corrective measures and the resulting selection of remedy are not currently required for the Primary Ash Pond.

5.7 Structural stability assessment - § 257.103(f)(2)(v)(C)(7)

Pursuant to § 257.73(d), the initial structural stability assessment report for the Primary Ash Pond was prepared in October 2016 and revised in January 2018 (to remove the Secondary Pond). The revised report is included as Attachment 7.

5.8 Safety factor assessment - § 257.103(f)(2)(v)(C)(8)

Pursuant to § 257.73(e), the initial safety factor assessment report for the Primary Ash Pond was prepared in October 2016 and revised in January 2018 (to remove the Secondary Pond). The revised report is included as Attachment 7.

6.0 DOCUMENTATION OF CLOSURE COMPLETION TIMEFRAME

To demonstrate that the criteria in § 257.103(f)(2)(iv) has been met, "the owner or operator must submit the closure plan required by § 257.102(b) and a narrative that specifies and justifies the date by which they intend to cease receipt of waste into the unit in order to meet the closure deadlines. The closure plan for the Primary Ash Pond is included as Attachment 8.

In order for a CCR surface impoundment over 40 acres to continue to receive CCR and non-CCR wastestreams after the initial April 11, 2021 deadline, the coal-fired boiler(s) at the facility must cease operation and the CCR surface impoundment must complete closure no later than October 17, 2028. As discussed below, Coleto will begin construction of the Primary Ash Pond closure by April 17, 2025, the boiler will cease coal-fired operations no later than July 17, 2027, and Coleto will cease placing wastestreams into the Primary Ash Pond by September 17, 2027, in order for closure to be completed by this deadline.

Table 6-1 is included below to summarize the major tasks and estimated durations associated with closing the Primary Ash Pond in place. These durations are consistent with the durations experienced with the closure of approximately 500 acres of other CCR impoundments already completed by CCP and its affiliates to date as noted below:

- Baldwin Fly Ash Pond System 230 acres closed in-place with an approximate 30-month construction schedule
- Hennepin West Ash Ponds System 35 acres closed in-place with an approximate 24-month
 construction schedule (includes closure by removal of an adjacent 6-acre settling pond and
 installing a sheet pile wall)
- Hennepin East Ash Ponds 2 and 4 25 acres closed in-place with an approximate 6-month construction schedule
- Coffeen Ash Pond 2 60 acres closed in-place with an approximate 24-month construction schedule
- Duck Creek Ash Ponds 1 and 2 130 acres closed in-place with an approximate 24-month construction schedule

Each CCR impoundment closure indicated above utilized a coordinated passive or gravity dewatering method, which consisted of the use of trenches excavated to lower the phreatic surface in portions of the impoundment to obtain a stable ash surface to permit the safe construction of the final cover system. The phreatic water in the trenches flows by gravity to sumps constructed within the impoundment. The major

benefit associated with this passive or gravity dewatering method is that the sumps are designed to provide holding time to allow the TSS to settle within the impoundment prior to discharge (an active dewatering method with wells would result in potential discharges of unsettled TSS). After solids settling, the water is discharged through the TPDES outfall in compliance with permitted limits.

Construction progressed sequentially as the dewatering of an area stabilized the ash surface. The CCR was graded to subgrade level, then overlain with the compacted clay layers and/or geomembrane liners. Vegetative soil cover was then placed on top of the infiltration layer. As each section of the impoundment was closed, this sequencing progressed to the completion of the pond closure. A similar process will be utilized to close the Coleto Primary Ash Pond in order to allow the final open section of the impoundment to be large enough for the impoundment to remain in operation until the pond ceases the receipt of waste. This would provide sufficient time for closure to be completed by October 17, 2028.

The first construction effort will involve modifying the pond operations by relocating the influent lines, minimizing the pond water levels, and isolating flow to a smaller portion of the current 190-acre impoundment that can be closed during the last two construction seasons. The smaller active portion of the pond will remain in operation while CCP begins dewatering and closing the impoundment as described above. This reduction in footprint may require the addition of chemical feeds to provide adequate treatment but that has not been the case at our other sequenced closures. This approach simultaneously allows for continued operation of the plant to maintain generating capacity for the ERCOT markets and minimizes the risk to the environment both by minimizing the pond size and the potential for any impacts to groundwater and by opening up a significant portion of the remaining impoundment to allow for dewatering, grading, and closure (in Phase 1).

Table 6-1 provides estimates for the durations required to close a portion of the pond footprint after the date noted to begin construction of closure (Phase 1), as well as the current estimates for the closure of the active area (Phase 2, remaining 40-50 acres). In order to dewater the impoundment, CCP will likely release pond water through the existing Outfall 003.

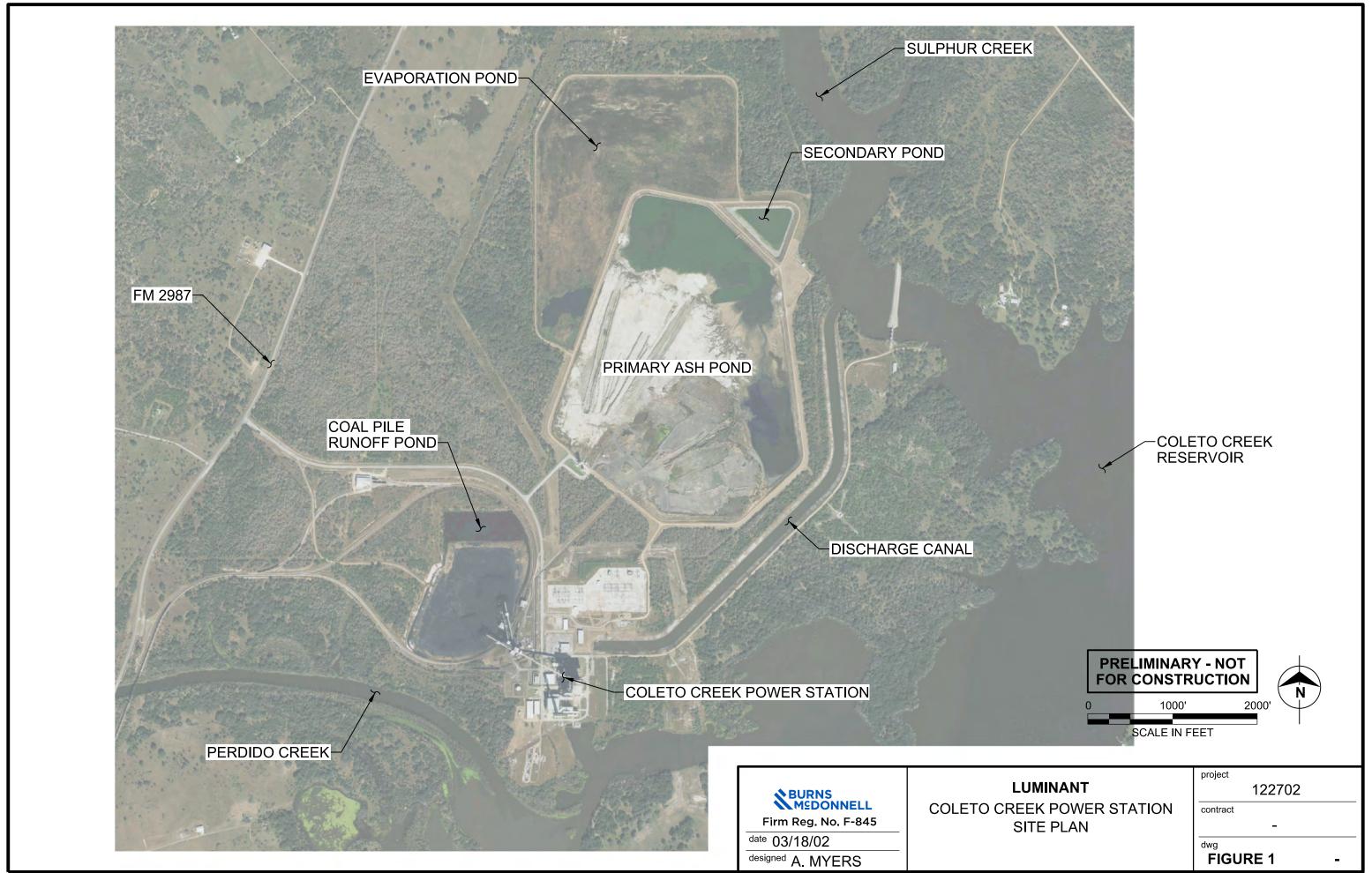
Table 6-1: Coleto Primary Ash Pond Closure Schedule

Action	Estimated Timeline (Months)
Spec, bid, and Award Engineering Services for CCR Impoundment Closure	3
Finalize CCR unit closure plan	12

Action	Estimated Timeline (Months)
State Waste Pollution Control Construction/Operating Permit TPDES Industrial Wastewater Permit Modification (modification could be required if there are changes to the quantity or quality of discharges or to allow reconfiguration of the various wastestreams to either other TPDES-permitted outfalls or newly constructed TPDES-permitted outfalls) General TPDES Permit for Storm Water Discharges from Construction Site Activities and Storm Water Pollution Prevention Plan (SWPPP)	24
Spec, bid, and Award Construction Services for CCR Impoundment Closure	3
Begin Construction of Closure	April 17, 2025
Minimize Active Area of Impoundment / Dewater Phase 1 Area	6
Regrade CCR Material in Phase 1 Area	18
Install Cover System – Phase 1 Area*	13
Establish Vegetation – Phase 1 Area**	2
Cease Coal-Fired Operations of Remaining Boiler Onsite (No Later Than)	July 17, 2027
Begin Dewatering Impoundment – Phase 2 Area	2
Cease Placement of Waste (No Later Than, allowing for plant cleanup and dredging of impoundments following coal pile and plant closure)	September 17, 2027
Continue Dewatering Impoundment – Phase 2 Area	1
Regrade CCR Material – Phase 2 Area	6
Install Cover System – Phase 2 Area	5
Establish Vegetation, Perform Site Restoration Activities, Complete Closure, and Initiate Post-Closure Care**	2
Total Estimated Time to Complete Closure	84 months

Action	Estimated Timeline (Months)
Date by Which Closure Must be Complete	October 17, 2028

^{*} Activity expected to overlap with grading operations, finishing 2 months after grading is completed.


^{**} Activity expected to overlap with cover system installation, finishing 1 month after cover installation is completed.

7.0 CONCLUSION

Based upon the information included in and attached to this demonstration, CCP has demonstrated that the requirements of 40 C.F.R. § 257.103(f)(2) are satisfied for the 190-acre Primary Ash Pond at Coleto. This CCR surface impoundment is needed to continue to manage the CCR and non-CCR wastestreams identified in Section 3.2 and 3.3 above, is larger than 40 acres, the coal-fired boiler at the station will cease coal-fired operation no later than July 17, 2027, and the Primary Ash Pond will be closed by the October 17, 2028 deadline. Therefore, this CCR unit qualifies for the site-specific alternative deadline for the initiation of closure authorized by 40 C.F.R. § 257.103(f)(2).

Therefore, it is requested that EPA approve CCP's demonstration and authorize the Primary Ash Pond at Coleto to continue to receive CCR and non-CCR wastestreams notwithstanding the deadline in § 257.101(a)(1) and to grant the alternative deadline of October 17, 2028, by which to complete closure of the impoundment.

MSW Facility Viewer

RISK MITIGATION PLAN - 40 C.F.R. § 257.103(f)(2)(v)(B)

INTRODUCTION

To demonstrate that the criteria in 40 C.F.R. § 257.103(f)(2)(ii) has been met, Coleto Creek Power, LLC ("CCP") has prepared this Risk Mitigation Plan for the Primary Ash Pond located at the Coleto Creek Power Plant ("Coleto Creek") located near Fannin, Texas.

EPA is requiring a risk mitigation plan to "address the potential risk of continued operation of the CCR surface impoundment while the facility moves towards closure of their coal-fired boiler(s), to be consistent with the court's holding in USWAG that RCRA requires EPA to set minimum criteria for sanitary landfills that prevent harm to either human health or the environment." 85 Fed. Reg. 53,516, 53,548 (Aug. 28, 2020).

As required by § 257.103(f)(2)(v)(B), the Risk Mitigation Plan must describe the "measures that will be taken to expedite any required corrective action," and contain the three following elements:

- First, "a discussion of any physical or chemical measures a facility can take to limit any future releases to groundwater during operation." § 257.103(f)(2)(v)(B)(1). In promulgating this requirement, EPA explained that this "might include stabilization of waste prior to disposition in the impoundment or adjusting the pH of the impoundment waters to minimize solubility of contaminants [and that] [t]his discussion should take into account the potential impacts of these measures on Appendix IV constituents." 85 Fed. Reg. at 53,548.
- Second, "a discussion of the surface impoundment's groundwater monitoring data and any found exceedances; the delineation of the plume (if necessary based on the groundwater monitoring data); identification of any nearby receptors that might be exposed to current or future groundwater contamination; and how such exposures could be promptly mitigated." § 257.103(f)(2)(v)(B)(2).
- Third, "a plan to expedite and maintain the containment of any contaminant plume that is either present or identified during continued operation of the unit." § 257.103(f)(2)(v)(B)(3). In promulgating this final requirement, EPA explained that "the purpose of this plan is to demonstrate that a plume can be fully contained and to define how this could be accomplished in the most accelerated timeframe feasible to prevent further spread and eliminate any potential for exposures." 85 Fed. Reg. at 53,549. In addition, EPA stated that "this plan will be based on relevant site data, which may include groundwater chemistry, the variability of local hydrogeology, groundwater elevation and flow rates, and the presence of any surface water features that would influence rate and direction of contamination movement. For example, based on the rate and direction of groundwater flow and potential for diffusion of the plume, this plan could identify the design and spacing of extraction wells necessary to prevent further downgradient migration of contaminated groundwater." 85 Fed. Reg. at 53,549.

Consistent with these requirements and guidance, CCP plans to continue to mitigate the risks to human health and the environment from the Coleto Creek Primary Ash Pond as detailed in this Risk Mitigation Plan.

1 OPERATIONAL MEASURES TO LIMIT FUTURE RELEASES TO GROUNDWATER - 40 C.F.R. § 257.101(f)(2)(v)(B)(1)

The Coleto Creek Primary Ash Pond is a 190-acre CCR surface impoundment. Consistent with the requirements of the CCR rule, compliance documents on Coleto Creek's CCR public website reflect the characterization of the Primary Ash Pond as a single unit for purposes of groundwater monitoring and closure activities.

The Primary Ash Pond receives sluiced bottom ash, economizer ash, and mill rejects, as well as non-marketable dry fly ash and various non-CCR wastewaters.

At the Coleto Creek Primary Ash Pond, none of the Appendix IV parameter have reported statistically significant levels (SSLs) above their respective Ground Water Protection Standards (GWPSs), as sampled and analyzed per the CCR surface impoundment's groundwater monitoring program. Therefore, Coleto Creek's current physical treatment operation adequately limits potential risks to human health and the environment during operation. Coleto Creek will continue this treatment process for the CCR surface impoundment until such time as closure is required per 40 C.F.R. Part 257. The facility's current physical treatment process is discussed below, followed by a discussion of other treatment processes that could be implemented, as required per § 257.103(f)(2)(v)(B)(1).

1.1 CURRENT OPERATION OF PHYSICAL TREATMENT

Fly ash is currently collected dry and normally hauled offsite for beneficial use; however, periodically, the market will not accept the fly ash due to varying properties or seasonal demand, in which case the ash is sluiced from the storage silo and disposed of in the Primary Ash Pond.

As part of normal operations, bottom ash, economizer ash, and mill rejects are transported through the sluice lines into the CCR surface impoundment where they are either removed for beneficial use or remain. The CCR surface impoundment serves as a wastewater treatment settling system which allows the solids to settle.

The various non-CCR wastewaters received originate from the demineralizer sump (including, reverse osmosis reject and demineralizer regeneration flows) and the boiler sump (including flows from laboratory drains, hopper overflow (ash contact/quench water), boiler blowdown condensate polisher regeneration, water pretreatment filter backwash, oil/water separator discharge, transformer area sump, stormwater from ash piping trench, fabric filter area wash, air heater wash, and boiler wash).

Therefore, since fly ash transport water is not routinely conveyed to the CCR surface impoundment, the current operation of Coleto Creek's CCR surface impoundment limits future releases to groundwater during operation, and consequently no potential safety impacts or exposure to human health or environmental receptors are expected to result. This is supported by CCR groundwater monitoring results, which show no SSLs above GWPS(s).

If Appendix IV releases are discovered per the facility's groundwater monitoring program, CCP will test, evaluate, and implement a chemical treatment method (i.e., pH adjustment, coagulation, precipitation, or other method as determined) for the Coleto Creek Primary Ash Pond to limit potential risks to human health and the environment during operation as a supplement to other corrective measures discussed in Section 3.

2 GROUNDWATER IMPACTS, RECEPTORS, AND POTENTIAL EXPOSURE MITIGATION – 40 C.F.R. § 257.101(f)(2)(v)(B)(2)

The Coleto Creek Primary Ash Pond, with a footprint of approximately 190 acres (Figure 1), currently remains in assessment monitoring. There have been no SSLs of Appendix IV parameter concentrations since assessment monitoring was established on May 9, 2018 in accordance with 40 C.F.R. § 257.95. The most recent summary of groundwater monitoring activities is provided in the "2019 Annual Groundwater Monitoring and Corrective Action Report, Coleto Creek Primary Ash Pond – Fannin, Texas" (Golder, 2020) [see Attachment 1]. A summary of the assessment monitoring program is provided in Table 1. Samples were collected for the second 2020 semi-annual monitoring period, but results are still under review.

Since there have been no SSLs exceedances of GWPS(s) to date, plume delineation has not been required. However, if one or more Appendix IV constituents are detected at SSLs above the GWPS(s), the nature and extent of the release would be characterized to delineate the contaminant plume. The existing conceptual site model and description of site hydrogeology provides site characterization data that will be used as the basis for executing supplemental plume delineation activities. A demonstration may also be made that a source other than the CCR unit caused the contamination, or that the SSL resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality (§257.95(g)(3)(ii)).

Receptors

For constituents of potential concern (COPCs) found in groundwater to pose a risk to human health or the environment, a complete exposure pathway must be present to a receptor with elevated concentrations of COPCs via that pathway.

Should a release of one or more Appendix IV parameters from the Coleto Creek Primary Ash Pond to groundwater occur in the future, the two primary risks to human health and the environment are via groundwater exposure and surface water exposure. Groundwater exposure would be via ingestion or dermal contact, both of which are likely an incomplete exposure pathway for the reasons discussed below. Impacted groundwater potentially migrating to nearby surface water bodies – specifically the Coleto Creek Reservoir and Sulphur Creek – is another potential exposure pathway; however, this is also likely incomplete for the reasons discussed below.

Ambient groundwater flow in the Uppermost Aquifer beneath the Primary Ash Pond is east and southeast towards Sulphur Creek and the Coleto Creek Reservoir. Groundwater elevations indicate minimal seasonal variation of water levels; however, water levels fluctuate in response to drought conditions and may be approximately 5 feet lower. During the background monitoring events, the average horizontal hydraulic gradient was calculated as 0.0027 feet per foot (ft/ft) and 0.0029 ft/ft across the northern and southern boundaries of the Primary Ash Pond. The average groundwater flow velocity was between 0.13 and 0.14 feet per day (ft/day) east and southeast towards Sulphur Creek and the Coleto Creek Reservoir (refer to the description of hydrogeology attached to the alternative closure demonstration letter).

Based on water well survey results completed in 2019 (Golder, 2019) there are three active potable water supply wells owned by Coleto Creek Power Station that provide potable water to the plant. All three wells are located greater than 0.25 miles from the Primary Ash Pond and are completed in a deeper water-bearing zone than the Uppermost Aquifer. A fourth well, owned by Coleto Creek Power Station and located approximately 0.25 miles

from the Primary Ash Pond, is inactive. Available well construction information for the production wells completed near the Primary Ash Pond indicate that these wells are completed at total depths ranging from 150 feet to 700 feet bgs, which is significantly deeper than the Uppermost Aquifer that is generally about 20 to 70 feet bgs (Golder, 2019). Three domestic wells are located more than 0.25 miles from the Primary Ash Pond, two of which are located upgradient of the Primary Ash Pond and the third is located on the opposite side of the Coleto Creek Reservoir. Thus, these wells could not plausibly be affected by impacted groundwater and, therefore, pose no risk concern to human health.

Should impacted groundwater migrate to nearby surface water bodies, there is no risk concern to human health because there are no surface-water intakes for community water supply (CWS) withdrawing from the Coleto Creek Reservoir or Sulfur Creek identified within a one-mile radius of the Coleto Creek property line. In addition, there are no known non-CWS surface water intakes withdrawing from the Coleto Creek Reservoir or Sulphur Creek within 2,500 feet of the site boundary.

Since there have been no SSLs above the GWPS, there is no risk to ecological receptors located near the Primary Ash Pond. If a release to groundwater were to occur, ecological receptors could potentially be exposed to COPCs through ingestion or direct contact with impacted groundwater; however, should any surface water or sediment come into contact with impacted groundwater, the risk of exposure is likely low due to expected attenuation and dilution. Depending on the magnitude of the release and other factors, it may or may not be possible to estimate potential increases in COPC concentrations in surface water using mixing calculations.

Although current conditions do not pose a risk concern to human health or the environment, measures presented in the Contaminant Plume Containment Plan (Section 3.1 of this RMP) would address any future potential exposures and risks by containing potential groundwater impacts and mitigating impacts to potential receptors.

If one or more Appendix IV parameters are detected and confirmed in groundwater at a SSL above GWPS(s), and the SSL is not attributed to an alternate source, via an alternate source demonstration (ASD), the first steps to mitigating risk will involve the immediate implementation of source control, which, if necessary, could include installation and operation of a groundwater extraction well or recovery trench system. This immediate source control would allow for capture of impacted groundwater and prevention of further plume migration towards the principal potential receptors. Furthermore, to characterize the nature and extent of the release, plume delineation wells will be installed as necessary to define the magnitude and limits of the groundwater impacts.

Exposure Mitigation

Mitigation of future potential exposures to groundwater contamination from continued operation of the Coleto Creek Primary Ash Pond is discussed in detail in the following section.

3 CONTAMINANT PLUME CONTAINMENT: OPTIONS EVALUATION AND PLAN- 40 C.F.R. § 257.101(f)(2)(v)(B)(3)

Appropriate corrective measure(s) to address future potential impacted groundwater associated with the Coleto Creek Primary Ash Pond are based on impacts to the Uppermost Aquifer. The Uppermost Aquifer consists mostly of sand and silty sand with intermittent discontinuous layers of clay. Mineral zones containing caliche and calcareous nodules are also prominent throughout this unit. The top of the aquifer is approximately 11 to 25 ft bgs and is 40 to 54 ft thick. The lower limit of the Uppermost Aquifer is defined by a basal clay stratum consisting primarily of clay and silty clay with periodic sandy clay zones. The basal unit is greater than 25 feet thick (refer to the description of hydrogeology attached to the alternative closure demonstration letter).

If one or more Appendix IV parameters are detected and confirmed in groundwater at a SSL above GWPS(s), and the SSL is not attributed to an alternate source, via an alternate source demonstration (ASD), the first steps to mitigating risk will involve the immediate implementation of source control, which, if necessary, could include installation and operation of a groundwater extraction well or recovery trench system. This immediate source control would allow for capture of impacted groundwater and prevention of further plume migration towards the principal potential receptors. Furthermore, to characterize the nature and extent of the release, plume delineation wells will be installed as necessary to define the magnitude and limits of the groundwater impacts. If applicable, notifications will be made to all persons who own the land or reside on the land that directly overlies any part of the groundwater plume. Additional soil and groundwater data will be collected as necessary to support a Corrective Measures Assessment (CMA), which will be initiated within 90 days of detecting the SSL. Further discussion of short-term and long-term corrective measures is further discussed in Section 3.1.

Since there has been no release of Appendix IV parameters to groundwater above GWPS(s), which would trigger a CMA under 40 C.F.R. § 257.96 based on specific parameter concentrations and contaminant plume dimensions, several options are evaluated to address potential future plume containments. The evaluation criteria for assessing remedial options are the following: performance; reliability; ease of implementation; potential impacts of the remedies (safety, cross-media, and control of exposure to residual contamination); time required to begin and complete the remedy; and, institutional requirements that may substantially affect implementation of the remedy(s), such as permitting, environmental or public health requirements.

Although future potential source control measures (e.g., closure in place, closure by removal to on-site or off-site landfill, in-situ solidification/stabilization) to mitigate groundwater impacts are typically considered as part of a CMA process upon closure of the Coleto Creek Primary Ash Pond, the shorter-term options considered for mitigating groundwater impacts relative to a potential future release of one or more Appendix IV parameters at Coleto Creek are as follows:

- Groundwater Extraction
- Groundwater Cutoff Wall
- Permeable Reactive Barrier
- In-Situ Chemical Treatment
- Monitored Natural Attenuation

These same groundwater remedial corrective measures will be evaluated for all Appendix IV constituents that present a future risk to human health or the environment.

Groundwater Extraction

This corrective measure includes installation of one or more groundwater pumping wells or trenches to control and extract impacted groundwater. Groundwater extraction captures and contains impacted groundwater and can limit plume expansion and/or off-site migration. Construction of a groundwater extraction system typically includes, but is not limited to, the following primary project components:

- Designing and constructing a groundwater extraction system consisting of one or more extraction wells
 or trenches located operating at a rate to allow capture of CCR impacted groundwater.
- Management of extracted groundwater, which may include modification to the existing NPDES permit, including treatment prior to discharge, if necessary.
- Ongoing inspection and maintenance of the groundwater extraction system.

Installation of a groundwater extraction system, whether wells or trenches, can be expedited with the assumption that there is a good conceptual site model (CSM) of the hydrogeological system around the CCR unit, groundwater flow and transport model, and aquifer testing. Upon notification of an SSL exceedance of a GWPS for one or more Appendix IV parameters, an aquifer test will be conducted, and groundwater model developed for designing a groundwater extraction system for optimization of contaminant plume capture.

A schematic of a typical groundwater extraction well is shown on Figure 2. Based on site specific hydrogeology and future potential plume width and depth, a groundwater extraction system would likely consist of one to three extraction wells with pitless adapter's manifolded together with high-density polyethylene (HDPE) conveyance pipe to a common tank or lined collection vault prior to treatment at the on-site wastewater treatment plant and discharge via the TPDES permitted outfall.

Groundwater Cutoff Wall

Vertical cutoff walls are used to control and/or isolate impacted groundwater. Low permeability cutoff walls can be used to prevent horizontal off-site migration of potentially impacted groundwater. Cutoff walls act as barriers to migration of impacted groundwater and can isolate soils that have been impacted by CCR to prevent contact with unimpacted groundwater. Cutoff walls are often used in conjunction with an interior pumping system to establish a reverse gradient within the cutoff wall. The reverse gradient imparted by the pumping system maintains an inward flow through the wall, keeping it from acting as a groundwater dam and controlling potential end-around or breakout flow of contaminated groundwater.

A commonly used cutoff wall construction technology is the slurry trench method, which consists of excavating a trench and backfilling it with a soil-bentonite mixture, often created with the soils excavated from the trench. The trench is temporarily supported with bentonite slurry that is pumped into the trench as it is excavated. Excavation for cutoff walls is conducted with conventional hydraulic excavators, hydraulic excavators equipped with specialized booms to extend their reach (*i.e.*, long-stick excavators), or chisels and clamshells, depending upon the depth of the trench and the material to be excavated.

Permeable Reactive Barrier

Chemical treatment via a Permeable Reactive Barrier (PRB) is defined as an emplacement of reactive materials in the subsurface designed to intercept a contaminant plume, provide a flow path through the reactive media, and transform or otherwise render the contaminant(s) into environmentally acceptable forms to attain remediation concentration goals downgradient of the barrier (EPRI, 2006).

As groundwater passes through the PRB under natural gradients, dissolved constituents in the groundwater react with the media and are transformed or immobilized. A variety of media have been used or proposed for use in PRBs. Zero-valent iron has been shown to effectively immobilize CCR constituents, including arsenic, chromium, cobalt, molybdenum, selenium, and sulfate. Zero-valent iron has not been proven effective for boron, antimony, or lithium (EPRI, 2006).

System configurations include continuous PRBs, in which the reactive media extends across the entire path of the contaminant plume; and funnel-and-gate systems, where barrier walls are installed to control groundwater flow through a permeable gate containing the reactive media. Continuous PRBs intersect the entire contaminant plume and do not materially impact the groundwater flow system. Design may or may not include keying the PRB into a low-permeability unit at depth. Funnel-and-gate systems utilize a system of barriers to groundwater flow (funnels) to direct the contaminant plume through the reactive gate. The barriers, typically some form of cutoff wall, are keyed into a low-permeability unit at depth to prevent short circuiting of the plume. Funnel-and-gate design must consider the residence time to allow chemical reactions to occur. Directing the contaminant plume through the reactive gate can significantly increase the flow velocity, thus reducing residence time.

Design of PRB systems requires rigorous site investigation to characterize the site hydrogeology and to delineate the contaminant plume. A thorough understanding of the geochemical and redox characteristics of the plume is critical to assess the feasibility of the process and select appropriate reactive media. Laboratory studies, including batch studies and column studies using samples of site groundwater, are needed to determine the effectiveness of the selected reactive media at the site (EPRI, 2006).

This is a potentially viable option for groundwater corrective measures, to be evaluated further, but is not a short-term solution that can be implemented expeditiously.

In-Situ Chemical Treatment

In-situ chemical treatment for inorganics are being tested and applied with increasing frequency. In-situ chemical treatment includes the targeted injection of reactive media into the subsurface to mitigate groundwater impacts. Inorganic contaminants are typically remediated through immobilization by reduction or oxidation followed by precipitation or adsorption (EPRI, 2006). Chemical reactants that have been applied or are in development for application in treating inorganic contaminants include ferrous sulfate, nanoscale zero-valent iron, organo-phosphorus nutrient mixture (PrecipiPHOSTM) and sodium dithionite (EPRI, 2006). Zero-valent iron has been shown to effectively immobilize cobalt and molybdenum. Implementation of in-situ chemical treatment requires detailed technical analysis of field hydrogeological and geochemical conditions along with laboratory studies.

This is a potentially viable option for groundwater corrective measures, to be evaluated further, but is not a short-term solution that can be implemented expeditiously.

Monitored Natural Attenuation (MNA)

Upon notification of a release of one or more Appendix IV constituent(s) to groundwater, MNA will be evaluated with site-specific characterization data and geochemical analysis as a long term remedial option, combined with source control measures, through application of the USEPA's tiered approach to MNA (USEPA 1999, 2007 and 2015):

- 1. Demonstrate that the area of groundwater impacts is not expanding.
- 2. Determine the mechanisms and rates of attenuation.
- 3. Determine that the capacity of the aquifer is sufficient to attenuate the mass of constituents in groundwater and that the immobilized constituents are stable and will not remobilize.
- 4. Design a performance monitoring program based on the mechanisms of attenuation and establish contingency remedies (tailored to site-specific conditions) should MNA not perform adequately.

MNA is not regarded as a short-term remedial option for contaminant plume containment, but as a potential long-term option following implementation of shorter-term control measures.

3.1 CONTAINMENT PLAN

Based on the options evaluated for containment of a future potential groundwater contaminant plume originating from the Coleto Creek Primary Ash Pond for one or more Appendix IV constituents exceeding their GWPS(s), the most viable short-term option of those evaluated is a groundwater extraction well or recovery trench system, which would allow for capture of impacted groundwater and prevention of further plume migration towards the principal potential receptors, which have been identified as Sulphur Creek and the Coleto Creek Reservoir.

In circumstances where there is not an immediate concern of endangerment to human health or the environment, other longer-term corrective measures may be more viable and will be further evaluated at the Coleto Creek Primary Ash Pond.

Depending on the location, depth, and plume geometry of any future potential Appendix IV exceedances of GWPSs, the specific constituent(s) with exceedances, and distance from potential receptors, the other groundwater corrective measures discussed as part of the corrective options evaluation – groundwater extraction, groundwater cutoff wall, permeable reactive barrier, in-situ chemical treatment, and MNA – are all secondary remedial alternatives available for consideration following the current primary options of groundwater extraction for short-term application.

4 REFERENCES

Electric Power Research Institute (EPRI), 2006. Groundwater Remediation of Inorganic Constituents at Coal Combustion Product Management Sites, Overview of Technologies, Focusing on Permeable Reactive Barriers. Electric Power Research Institute, Palo Alto, California. Final Report 1012584, October 2006.

Golder, 2019. Drinking water Survey Report, Coleto Creek Power Station, Goliad County, Texas. May 24, 2019.

Golder, 2020. 2019 Annual Groundwater Monitoring and Corrective Action Report, Coleto Creek Primary Ash Pond – Fannin, Texas. January 31, 2020.

USEPA, 1999. Use of Monitored Natural Attenuation at Superfund, RCRA Corrective Action, and Underground Storage Tank Sites. Directive No. 9200.U-17P. Washington, D.C.: EPA, Office of Solid Waste and Emergency Response.

USEPA, 2007. Monitored Natural Attenuation of Inorganic Contaminants in Ground Water, Volume 1 – Technical Basis for Assessment. EPA/600/R-07/139. National Risk Management Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Cincinnati, Ohio. October 2007.

USEPA, 2015. Use of Monitored Natural Attenuation for Inorganic Contaminants in Groundwater at Superfund Sites. Directive No. 9283.1-36. U.S. Environmental Protection Agency, Office of Solid Waste and Emergency Response. August 2015.

TABLES

Table 1 - Assessment Monitoring Program Summary, Coleto Creek Primary Ash Pond

Sampling Dates	Analytical Data Receipt Date	Parameters Collected	SSL(s) Appendix IV	SSL(s) Determination	ASD Completion Date	CMA Completion / Status
June 18-25, 2018	August 7, 2018	Appendix III Appendix IV	None	NA	NA	NA
September 18, 2018	October 12, 2018	Appendix III Appendix IV Detected1	None	NA	NA	NA
June 3-5, 2019	July 12, 2019	Appendix III Appendix IV	None	NA	NA	NA
October 2-3, 2019	November 5, 2019	Appendix III Appendix IV Detected1	None	NA	NA	NA
June 9, 2020	July 15, 2020	Appendix III Appendix IV	None	NA	NA	NA
October 7, 2020	November 9, 2020	Appendix III Appendix IV Detected1	TBD	TBD	TBD	TBD

Notes:

CMA = Corrective Measures Assessment

NA = Not Applicable

TBD = To Be Determined

1. Groundwater sample analysis was limited to Appendix IV parameters detected in previous events in accordance with 40 C.F.R. § 257.95(d)(1).

FIGURES

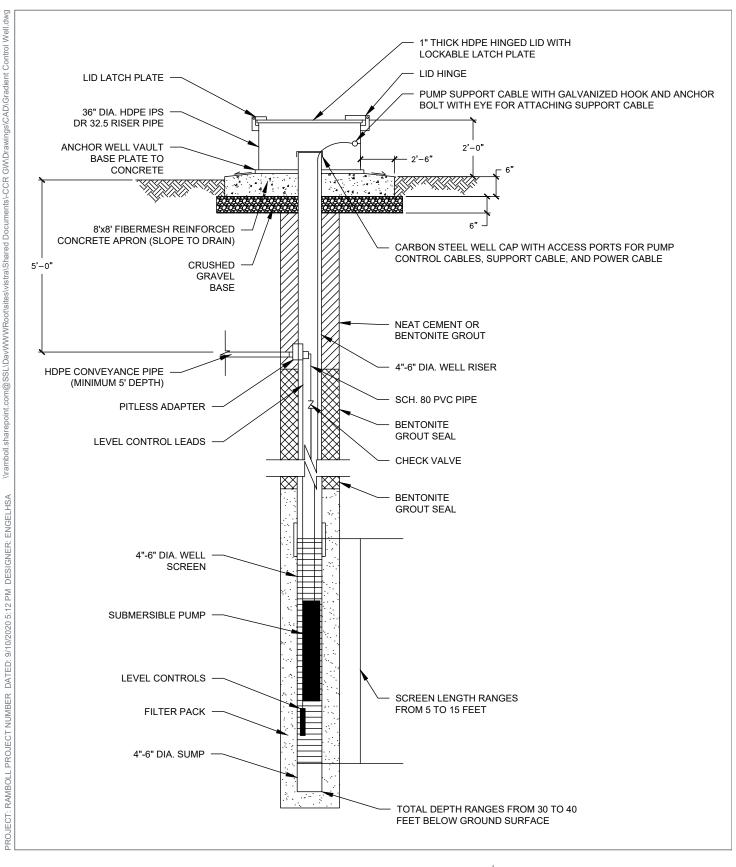
DOWNGRADIENT MONITORING WELL LOCATION

UPGRADIENT MONITORING WELL LOCATION

CCR MONITORING UNIT

CLIENT COLETO CREEK POWER LP

PROJECT
COLETO CREEK POWER STATION FANNIN, TEXAS


CONSULTANT

DETAILED SITE PLAN - COLETO CREEK PRIMARY ASH POND

S GOLDER

YYY-MM-DD	2019-01-14
DESIGNED	AJD
REPARED	AJD
REVIEWED	WFV
APPROVED	WFV

PROJECT NO. 18106453 FIGURE 1 REV. 0

NOTES

1. NOT TO SCALE

TYPICAL HYDRAULIC GRADIENT CONTROL WELL DETAIL

FIGURE 2

RAMBOLL US CORPORATION A RAMBOLL COMPANY

Coleto Creek Power, L.L.C
COLETO CREEK PRIMARY ASH POND
FANNIN, TEXAS

2019 Annual Groundwater Monitoring and Corrective Action Report

Coleto Creek Primary Ash Pond - Fannin, Texas

Prepared for:

Coleto Creek Power, LLC

Submitted by: **Golder Associates Inc.** 2201 Double Creek Dr, Suite 4004, Round Rock, Texas, USA 78664 +1 512 671-3434 January 31, 2020

TABLE OF CONTENTS

LIST	OF FIGURES	. I
LIST	OF TABLES	. I
	ONYMS AND ABBREVIATIONS	
	INTRODUCTION	
	MONITORING AND CORRECTIVE ACTION PROGRAM STATUS	
	KEY ACTIONS COMPLETED IN 2019	
	PROBLEMS ENCOUNTERED AND ACTIONS TO RESOLVE THE PROBLEMS	
	KEY ACTIVITIES PLANNED FOR 2020	
6.0	REFERENCES	. 7

LIST OF FIGURES

Figure 1 Primary Ash Pond Detailed Site Plan

LIST OF TABLES

Table 1 Statistical Background ValuesTable 2 Groundwater Protection StandardsTable 3 Appendix III Analytical Results

Table 4 Appendix IV Analytical Results

ACRONYMS AND ABBREVIATIONS

CCR Coal Combustion Residuals

CFR Code of Federal Regulations

GWPS Groundwater Protection Standard

MCL Maximum Concentration Level

mg/L Milligrams per Liter

NA Not Applicable

OBG O'Brien & Gere Engineers, Inc.

SSI Statistically Significant Increase

SSL Statistically Significant Levels

USEPA United States Environmental Protection Agency

1.0 INTRODUCTION

Golder Associates, Inc. (Golder) has prepared this report on behalf of Coleto Creek Power, LLC to satisfy annual groundwater monitoring and corrective action reporting requirements of the Coal Combustion Residuals (CCR) Rule for the Primary Ash Pond at the Coleto Creek Power Station in Fannin, Texas. The CCR units and CCR monitoring well network are shown on Figure 1.

The CCR Rule (40 CFR 257 Subpart D - Standards for the Receipt of Coal Combustion Residuals in Landfills and Surface Impoundments) has been promulgated by the United States Environmental Protection Agency (USEPA) to regulate the management and disposal of CCRs as solid waste under Resource Conservation and Recovery Act (RCRA) Subtitle D. For existing CCR landfills and surface impoundments, the CCR Rule requires that the owner or operator prepare an annual groundwater monitoring and corrective action report to document the status of the groundwater monitoring and corrective action program for the CCR unit for the previous calendar year. Per 40 CFR 257.90(e) of the CCR Rule, the report should contain the following information, to the extent available:

- (1) A map, aerial image, or diagram showing the CCR unit and all background (or upgradient) and downgradient monitoring wells, to include the well identification numbers, that are part of the groundwater monitoring program for the CCR unit;
- (2) Identification of any monitoring wells that were installed or decommissioned during the preceding year, along with a narrative description of why those actions were taken;
- (3) In addition to all the monitoring data obtained under §§ 257.90 through 257.98, a summary including the number of groundwater samples that were collected for analysis for each background and downgradient well, the dates the samples were collected, and whether the sample was required by the detection monitoring or assessment monitoring programs;
- (4) A narrative discussion of any transition between monitoring programs (e.g., the date and circumstances for transitioning from detection monitoring to assessment monitoring in addition to identifying the constituent(s) detected at a statistically significant increase over background levels); and
- (5) Other information required to be included in the annual report as specified in §§ 257.90 through 257.98.

2.0 MONITORING AND CORRECTIVE ACTION PROGRAM STATUS

O'Brien & Gere Engineers, Inc. (OBG) collected the initial Detection Monitoring Program groundwater samples from the Primary Ash Pond CCR monitoring well network in November 2017. OBG completed an evaluation of those data in 2018 to identify statistically significant increases (SSIs) of Appendix III parameters over background concentrations. The Detection Monitoring Program sampling dates and parameters are summarized in the following table:

Detection Monitoring Program Summary

Sampling Dates	Parameters	SSIs	Assessment Monitoring Program Established
November 7-8, 2017	Appendix III	Yes	May 9, 2018

Alternate source evaluations were inconclusive for one or more of the SSIs. Consequently, an Assessment Monitoring Program was initiated and established for the Primary Ash Pond CCR units in 2018 in accordance with 40 CFR § 257.94(e)(2).

Assessment Monitoring groundwater samples were collected from the CCR groundwater monitoring network in 2018, as required by the CCR Rule. OBG collected the initial 2018 Assessment Monitoring Program groundwater samples in June 2018. Subsequent Assessment Monitoring Program sampling events have been conducted by Golder on a semi-annual basis, as required by the CCR Rule. All CCR groundwater monitoring wells were sampled for Appendix III and Appendix IV constituents during the first semi-annual sampling events of each year. During the second semi-annual sampling events, the CCR wells were sampled for all Appendix III parameters and for the Appendix IV parameters that were detected during the first semi-annual sampling events in accordance with 40 CFR § 257.95(d)(1). The Assessment Monitoring Program sampling dates and parameters are summarized in the following table:

Assessment Monitoring Program Summary

Sampling Dates	Analytical Data Receipt Date	Parameters Collected	SSL(s)	SSL(s) Determination Date	Corrective Measures Assessment Initiated	
June 19-25, 2018	August 7, 2018	Appendix III Appendix IV	No	NA	NA	
Sept. 18, 2018	October 12, 2018	Appendix III Appendix IV ¹	No	NA	NA	
June 3-5, 2019	July 12, 2019	Appendix III Appendix IV	No	NA	NA	
October 2-3, 2019	November 5, 2019	Appendix III Appendix IV	No	NA	NA	

Notes:

NA: Not Applicable

The statistical background values and Groundwater Protection Standards (GWPSs) are summarized in Tables 1 and 2, respectively. Appendix III and Appendix IV analytical data are summarized in Tables 3 and 4, respectively. Statistical analysis of the 2019 data was performed in accordance with the Statistical Analysis Plan for CCR Groundwater Monitoring (PBW 2017) and the USEPA Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities-Unified Guidance (USEPA 2009). The statistical analysis included an evaluation of confidence intervals for each of the Appendix IV parameter data sets to evaluate whether constituent concentrations were present at concentrations above GWPSs. Based on the sample data collected in 2019, Appendix IV parameters were not observed at SSLs above GWPSs

^{1.} Groundwater sample analysis was limited to Appendix IV parameters detected in previous events in accordance with 40 CFR § 257.95(d)(1).

3.0 KEY ACTIONS COMPLETED IN 2019

Assessment Monitoring Program groundwater monitoring events were completed in June and October 2019. The number of groundwater samples that were collected for analysis for each background and downgradient well, the dates the samples were collected, and the analytical results for the groundwater samples are summarized in Table 3 (Appendix III parameters) and Table 4 (Appendix IV parameters). A map showing the CCR units and monitoring wells is provided as Figure 1.

No CCR wells were installed or decommissioned in 2019.

4.0 PROBLEMS ENCOUNTERED AND ACTIONS TO RESOLVE THE PROBLEMS

No problems were encountered with the CCR groundwater monitoring program in 2019.

5.0 KEY ACTIVITIES PLANNED FOR 2020

The following key activities are planned for 2020:

- Continue the Assessment Monitoring Program in accordance with 40 CFR § 257.95.
- Complete statistical evaluation of Appendix IV analytical data from the downgradient wells and compare results to GWPSs to determine whether an SSL has occurred.
- If an SSL is identified, notification will be prepared as required under 40 CFR § 257.95(g). The notification will be placed in the operating record per 40 CFR § 257.105(h)(8) and will be subsequently placed on the public website per 40 CFR § 257.107(d). Potential alternate sources (i.e., a source other than the CCR unit caused the SSL or that the SSL resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality) will be evaluated. If an alternate source is identified to be the cause of the SSL, a written demonstration will be completed within 90 days of SSL determination and included in the Annual Groundwater Monitoring and Corrective Action Report.
- If an alternate source is not identified to be the cause of the SSL, the applicable requirements of 40 CFR §§ 257.94 through 257.98 (e.g., assessment of corrective measures) will be met, including associated recordkeeping/notifications required by 40 CFR §§ 257.105 through 257.108.

6.0 REFERENCES

O'Brien and Gere Engineers, Inc. (OBG), 2017. Statistical Analysis Plan, Coleto Creek Power Station.

Signature Page

Golder Associates Inc.

Pat Behling
Principal Engineer

Golder and the G logo are trademarks of Golder Associates Corporation.

FIGURES

DOWNGRADIENT MONITORING WELL LOCATION

UPGRADIENT MONITORING WELL LOCATION

CCR MONITORING UNIT

CLIENT COLETO CREEK POWER LP

PROJECT
COLETO CREEK POWER STATION FANNIN, TEXAS

CONSULTANT

DETAILED SITE PLAN - COLETO CREEK PRIMARY ASH POND

S GOLDER

2019-01-14
AJD
AJD
WFV
WFV

PROJECT NO. 18106453 FIGURE 1 REV. 0

Table 1
Statistical Background Values
Coleto Creek Primary Ash Pond

	Statistical Background
Parameter	Value
Boron (mg/L)	1.26
Calcium (mg/L)	143
Chloride (mg/L)	118
Fluoride (mg/L)	0.61
field pH (c.u.)	6.51
field pH (s.u.)	7.33
Sulfate (mg/L)	148
Total Dissolved Solids (mg/L)	966

Table 2
Groundwater Protection Standards
Coleto Creek Primary Ash Pond

	Groundwater
Parameter	Protection Standard
Antimony (mg/L)	0.006
Arsenic (mg/L)	0.128
Barium (mg/L)	2
Beryllium (mg/L)	0.004
Cadmium (mg/L)	0.005
Chromium (mg/L)	0.10
Cobalt (mg/L)	0.0499
Fluoride (mg/L)	4
Lead (mg/L)	0.015
Lithium (mg/L)	0.04
Mercury (mg/L)	0.002
Molybdenum (mg/L)	0.10
Selenium (mg/L)	0.05
Thallium (mg/L)	0.002
Radium 226+228 (pCi/L)	5

TABLE 3 APPENDIX III ANALYTICAL RESULTS COLETO CREEK PRIMARY ASH POND

Sample	Date	В	Co	CI	FI	field all	SO ₄	TDC
Location	Sampled	В	Ca	CI	FI	field pH	304	TDS
Upgradient Wells						•	<u> </u>	
BV-5	03/29/17	1.15	90.5	118	0.54	7.01	147	860
BV-3	05/11/17	1.03	81.6	106	0.57	6.89	148	862
	05/16/17	1.17	99	107	0.55	6.9	145	832
	06/07/17	1.11	88.8	109	0.56	6.64	147	810
	06/20/17	1.02	90.7	106	0.58	6.54	145	716
	06/27/17	1.14	100	114	0.55	6.76	144	743
	07/12/17	1.07	96.8	112	0.56	6.88	140	430
	07/18/17	1.17	143	117	0.56	6.68	142	817
	11/07/17	1.10	94.2	109	0.62	6.96	136	850
	06/19/18	1.18	56.4	112	0.97		147	775
	09/18/18	1.27	86.2	145	0.667	6.53	146	904
	06/05/19	1.26	82.9	123	0.769	6.89	146	828
	10/03/19	1.31	72.2	141	0.753	7.11	145	806
BV-21	03/28/17	0.651	6.89	36	0.61	7.09	69	490
DV-21	05/09/17	0.687	65.2	38	0.61	7.04	55	410
	05/17/17	0.709	74.3	39	0.58	7.05	53	454
	06/06/17	0.657	69	40	0.59	7.11	49	452
	06/20/17	0.642	77	40	0.61	6.7	45	356
	06/27/17	0.727	84.9	40	0.6	6.97	46	420
	07/10/17	0.674	90.6	39	0.58	7.22	45	427
	07/18/17	0.618	84.4	39	0.6	6.91	44	380
	11/07/17	0.515	73.6	42	0.64	7.12	46	423
	06/25/18	0.543	69.3	38.4	0.62		38.4	380
	09/18/18	0.624	72.1	33.3	0.479	6.64	36.4	416
	06/05/19	0.576	61.3	30.3	0.602	7.1	34.2	379
	10/03/19	0.534	63.4	23.9	0.588	6.82	33.2	342
MW-8	03/28/17	1.2	7.76	79	0.49	7.06	76	626
10100-0	05/09/17	1.21	77.5	77	0.44	7.15	79	564
	05/15/17	1.16	81.2	76	0.44	7.01	79	558
	06/06/17	1.26	78.1	72	0.45	6.92	83.5	570
	06/20/17	1.24	86.5	67	0.43	6.7	89	476
	06/27/17	1.23	89.6	66	0.44	6.85	97	533
	07/10/17	1.24	92.6	63	0.44	7.13	97	533
	07/18/17	1.25	92.9	61	0.46	6.91	100	533
	11/07/17	1.21	78.8	61	0.49	7.08	100	540
	06/25/18	1.25	80.3	65.9	0.52		95.2	565
	09/18/18	1.29	76.5	53.7	0.402	6.70	94.8	543
	06/05/19	1.11	65.2	51.4	0.497	7.10	79	515
	10/03/19	1.2	76.7	58.3	0.419	6.76	90.1	541

TABLE 3 APPENDIX III ANALYTICAL RESULTS COLETO CREEK PRIMARY ASH POND

Sample	Date	-	0-	01		Cald all	00	TDO
Location	Sampled	В	Ca	CI	FI	field pH	SO ₄	TDS
Downgradient Wells	·							
NA) A / A	03/28/17	0.287	9.14	102	0.61	9.81	157	794
MW-4	05/09/17	0.395	88.7	101	0.61	7.27	156	668
	05/17/17	0.251	92.1	101	0.6	6.93	157	702
	06/06/17	0.243	90.7	101	0.63	7.13	157	728
	06/20/17	0.254	99.3	101	0.62	6.71	157	626
	06/27/17	0.254	102	101	0.63	6.87	157	690
	07/10/17	0.271	111	101	0.62	7.16	158	670
	07/18/17	0.292	108	101	0.63	6.82	157	717
	11/07/17	0.255	94.5	99	0.62	7.12	155	700
	06/21/18	0.267	92.5	104	0.6		159	665
	09/18/18	0.28	91.8	102	0.582	6.63	155	720
	06/05/19	0.379	85.3	108	0.67	6.92	161	718
	10/03/19	0.367	93.1	102	0.559	6.7	155	693
NAVA / E	03/30/17	0.11	110	140	0.51	6.85	184	830
MW-5	05/10/17	0.115	114	139	0.54	6.86	183	900
	05/16/17	0.215	121	139	0.5	6.81	183	848
	06/08/17	0.122	118	139	0.55	6.8	182	862
	06/21/17	0.122	124	138	0.53	6.6	182	813
	06/26/17	0.121	129	139	0.54	6.79	184	900
	07/11/17	0.111	120	138	0.52	6.91	184	797
	07/19/17	0.001	0.005	137	0.53	6.84	181	857
	11/08/17	0.149	116	138	0.52	6.92	183	883
	06/25/18	0.119	114	140	0.56		183	820
	09/18/18	0.146	114	136	0.493	6.70	183	824
	06/03/19	0.146	113	143	0.596	7.06	187	864
	10/02/19	0.179	111	147	0.543	7.06	202	842
MW-6	03/29/17	1.67	73.9	69	0.38	7.34	99	510
IVIVV	05/11/17	1.94	70.6	70	0.37	7.1	110	490
	05/16/17	1.84	76.3	70	0.36	7.23	107	506
	06/07/17	1.8	73.8	70	0.37	6.97	103	492
	06/22/17	1.97	79.9	69	0.37	7.11	100	510
[06/28/17	1.74	81.8	69	0.37	7.16	99	570
<u> </u>	07/12/17	1.76	81.6	69	0.35	7.24	98	557
<u> </u>	07/20/17	0.005	0.0002	69	0.39	6.9	97	530
[11/07/17	1.72	76.4	69	0.39	7.41	101	483
<u> </u>	06/22/18	0.0171	76.6	70.7	0.41		107	490
<u> </u>	09/18/18	2.09	70.8	72.5	0.353 J	6.97	114	505
[06/03/19	1.9	73.9	73	0.043	7.31	103	514
	10/02/19	1.83	73.6	76.4	0.357 J	7.29	115	507

TABLE 3 APPENDIX III ANALYTICAL RESULTS COLETO CREEK PRIMARY ASH POND

Sample	Date	В	Са	CI	FI	field pH	SO ₄	TDS
Location	Sampled	Ь	Ca	CI	FI	пена рп	30 ₄	פטו
MW-9	03/30/17	3.38	54.5	71	1.13	7.35	62	406
10100-9	05/10/17	3.16	52.7	66	1.29	7.48	59	410
	05/17/17	3.18	53.3	67	1.26	7.34	58	440
	06/07/17	3.12	52	67	1.26	7.03	57	380
	06/21/17	3.44	60.7	66	1.39	7.09	60	393
	06/26/17	3.31	60.6	67	1.4	7.23	61	407
	07/11/17	3.35	52.1	64	1.3	7.51	60	927
	07/19/17	3.4	50.2	63	1.4	7.29	62	407
	11/08/17	2.84	49.4	62	1.56	7.54	50	397
	06/21/18	2.94	46.9	71.5	1.5		35.7	370
	09/18/18	2.79	51.7	71.4	1.1	6.99	49.1	394
	06/05/19	4.26	48	74.7	1.38	7.4	66.3	421
	10/03/19	3.97	71.3	70.9	1.41	7.37	63.6	462
MW-10	03/30/17	3.74	92.1	151	0.54	6.99	130	804
IVIVV-10	05/10/17	7.32	56.1	82	0.83	7.23	96	582
	05/16/17	7.45	62.7	81	0.81	7.28	95	612
	06/08/17	7.54	58.1	77	0.84	7.23	92	604
	06/21/17	9.22	60.7	77	0.84	6.97	92	550
	06/26/17	8.21	63.4	78	0.84	7.14	92	530
	07/11/17	7.99	49.5	76	0.84	7.4	88	617
	07/19/17	8.74	56.6	74	0.86	7.25	86	533
	11/08/17	8.72	77.7	74	0.88	7.35	81	590
	06/22/18	8.47	84.4	76.7	0.88			550
	09/18/18	8.45	51.9	81.4	0.759	6.98	95.1	577
	06/03/19	8.28	43.1	87.2	0.953	7.52	97.7	587
	10/02/19	8.28	44.2	85.5	0.891	7.46	104	575
MW-11	05/10/17	1.35	64.1	55	0.82	7.27	61	394
10100 11	05/16/17	1.39	62.3	52	0.85	7.29	58	362
	05/18/17	1.27	61.6	47.8	0.94		52.4	390
	06/07/17	1.23	59.8	48	0.93	7.25	50	372
	06/21/17	1.19	73.1	43.7	1.04	7.15	44	373
	06/26/17	1.15	82	44	1	7.3	43	407
	07/11/17	1.23	44.7	44	1	7.55	42	603
	07/19/17	1.17	48.6	43	1.01	7.21	42	360
	11/08/17	1.13	52.2	43	1.02	7.61	56	367
	06/21/18	1.07	69.6	44.3	0.96		61.4	355
	09/18/18	1.12	39.3	44.6	0.754	7.00	44.4	354
	06/03/19	1.27	43.4	42.2	0.837	7.55	44.8	372
	10/02/19	1.22	43.4	41.4	0.768	7.43	10.8	355

Notes:

- 1. All concentrations in mg/L. pH in standard units.
- 2. J concentration is below sample quantitation limit; result is an estimate.

TABLE 4
APPENDIX IV ANALYTICAL RESULTS
COLETO CREEK PRIMARY ASH POND

Sample Location	Date Sampled	Sb	As	Ва	Ве	Cd	Cr	Со	FI	Pb	Li	Hg	Мо	Se	TI	Ra 226	Ra 228	Ra 226/228 Combined
Upgradient			Į.			Į.	ı .					•	•					
BV-5	03/29/17	<0.0025	0.00856	0.04510	<0.001	<0.001	< 0.005	0.0497	0.540	< 0.001	0.0206	<0.0002	0.00925	< 0.005	< 0.0015			1.503
	05/11/17	< 0.0025	0.00786	0.03680	<0.001	< 0.001	< 0.005	0.0462	0.570	< 0.001	0.018	< 0.0002	0.0101	< 0.005	< 0.0015			1.555
	05/16/17	< 0.0025	0.00885	0.04520	<0.001	< 0.001	< 0.005	0.0495	0.550	0.00151	0.0171	< 0.0002	0.0102	< 0.005	< 0.0015			0.7550
	06/07/17	< 0.0025	0.00829	0.03760	< 0.001	< 0.001	< 0.005	0.0483	0.560	< 0.001	0.0207	< 0.0002	0.01	< 0.005	< 0.0015			1.457
[06/20/17	< 0.0025	0.00841	0.04010	< 0.001	< 0.001	< 0.005	0.0499	0.580	< 0.001	0.0208	< 0.0002	0.0114	< 0.005	< 0.0015			0.4920
[06/27/17	< 0.0025	0.0083	0.04120	< 0.001	< 0.001	< 0.005	0.046	0.550	< 0.001	0.0198	< 0.0002	0.00942	< 0.005	< 0.0015			2.247
[07/12/17	< 0.0025	0.00849	0.04160	< 0.001	< 0.001	< 0.005	0.0484	0.560	< 0.001	0.0188	< 0.0002	0.0096	< 0.005	< 0.0015			2.139
	07/18/17	< 0.0025	0.00951	0.05780	<0.001	<0.001	0.00739	0.0453	0.560	0.00288	0.022	< 0.0002	0.0083	< 0.005	< 0.0015			1.260
L	06/19/18	< 0.0025	0.0106	0.0336	<0.001	< 0.001	0.0022 J	0.0513 J	0.970	<0.00074 J	0.016	< 0.0002	0.0139	< 0.005	< 0.0015	0.327	<1.680	2.01
	09/18/18	NA	0.00949	0.0436	NA	NA	0.00228 J	0.0487	0.667	0.00039 J	0.0206	NA	0.0102	NA	NA	0.302	<0.608	0.91
	06/05/19	<0.0008	0.0092	0.042	<0.0003	0.0009 J	< 0.002	0.0466	0.769	0.00144	0.0201	<0.00008	0.0109	<0.0020	<0.0005	<0.687	<1.130	<1.82
	10/03/19	<0.0008	0.00941	0.0441	<0.0003	< 0.0003	0.00285 J	0.0437	0.753	0.0039	0.0172	<0.00008	0.0122	< 0.0020	< 0.0005	0.928	1.35	2.28
BV-21	03/28/17	<0.0025	0.0954	0.09630	<0.001	<0.001	< 0.005	0.0083	0.610	<0.001	<0.010	< 0.0002	< 0.005	< 0.005	<0.0015			1.390
	05/09/17	<0.0025	0.108	0.09720	<0.001	<0.001	< 0.005	0.00852	0.610	<0.001	<0.010	< 0.0002	< 0.005	< 0.005	<0.0015			0.7460
	05/17/17	<0.0025	0.117	0.09440	<0.001	<0.001	< 0.005	0.00878	0.580	<0.001	<0.010	<0.0002	< 0.005	<0.005	<0.0015			0.9190
	06/06/17	<0.0025	0.118	0.09540	<0.001	<0.001	< 0.005	0.00806	0.590	< 0.001	<0.010	<0.0002	< 0.005	<0.005	<0.0015			0.6710
∥ ↓	06/20/17	<0.0025	0.121	0.1010	<0.001	<0.001	< 0.005	0.00744	0.610	< 0.001	<0.010	<0.0002	< 0.005	< 0.005	<0.0015			1.672
	06/27/17	<0.0025	0.128	0.1040	<0.001	<0.001	< 0.005	0.00841	0.600	<0.001	< 0.010	<0.0002	< 0.005	<0.005	<0.0015			0.5200
	07/10/17	<0.0025	0.123	0.1100	<0.001	<0.001	<0.005	0.0086	0.580	<0.001	<0.010	<0.0002	< 0.005	< 0.005	<0.0015			0.8050
II L	07/18/17	<0.0025	0.115	0.1010	<0.001	<0.001	< 0.005	0.00784	0.600	<0.001	<0.010	<0.0002	< 0.005	<0.005	<0.0015			4.812
∥	06/25/18	<0.0025	0.0697	0.104	<0.001	<0.001	< 0.005	0.00682	0.620	<0.00074 J	0.00513 J	< 0.0002	0.00428 J	<0.005	<0.0015	0.267	<1.417	1.68
	09/18/18	NA	0.0625	0.109	NA	NA	<0.002	0.0064	0.479	0.000555 J	0.00624 J	NA	0.00450 J	NA	NA	<0.31	<0.528	<0.838
	06/05/19	<0.0008	0.0531	0.105	<0.0003	<0.0003	<0.002	0.00574	0.602	0.000354	0.00558 J	<0.00008	0.00685	<0.0020	<0.0005	0.65	< 0.687	1.337
	10/03/19	<0.0008	0.049	0.0963	<0.0003	<0.0003	<0.002	0.00542	0.588	0.000333 J	< 0.005	<0.00008	0.00784	<0.0020	<0.0005	0.346	1.54	1.89
MW-8	03/28/17	<0.0025	0.00839	0.0623	<0.001	<0.001	< 0.005	0.0236	0.490	<0.001	0.0111	<0.0002	0.0154	< 0.005	<0.0015			0.4520
	05/09/17	<0.0025	0.00848	0.064	<0.001	<0.001	< 0.005	0.0272	0.440	<0.001	0.0111	<0.0002	0.0157	< 0.005	<0.0015			0.4740
	05/15/17	<0.0025	0.00926	0.064	<0.001	<0.001	<0.005	0.0311	0.440	<0.001	0.0112	<0.0002	0.016	<0.005	<0.0015			0.6140
-	06/06/17	<0.0025	0.00912	0.0616	<0.001	<0.001	0.00744	0.0308	0.450	<0.001	0.0107	<0.0002	0.0157	<0.005	<0.0015			0.1320
∥ ⊦	06/20/17	<0.0025	0.00885	0.0669	<0.001	<0.001	<0.005	0.0297	0.430	<0.001	0.0121	<0.0002	0.0171	<0.005	<0.0015			0.5380
∥ ⊦	06/27/17	<0.0025	0.00939	0.0633	<0.001	<0.001	<0.005	0.0314	0.440	<0.001	0.0115	<0.0002	0.0163	<0.005	<0.0015			0.9390
∥ ⊦	07/10/17	<0.0025	0.00902	0.0631	<0.001	<0.001	<0.005	0.031	0.440	<0.001	0.0112	<0.0002	0.0165	<0.005	<0.0015			0.8040
∥ ⊦	07/18/17	<0.0025	0.00937	0.0635	<0.001	<0.001	<0.005	0.0352	0.460	<0.001	0.0118	<0.0002	0.0185	<0.005	<0.0015		4.004	2.113
∥ ⊦	06/25/18	<0.0025	0.0101	0.0632	<0.001	<0.001	<0.005	0.029	0.520	0.0011	0.0107	<0.0002	0.017	<0.005	<0.0015	<0.234	<1.204	<1.44
∥ ⊦	09/18/18	NA	0.00896	0.0582	NA 0.0000	NA	<0.00200	0.0237	0.402	<0.0003	0.0117	NA	0.0178	NA	NA 0.0005	<0.281	<0.558	<0.84
	06/05/19	<0.0008	0.00946	0.0596	<0.0003	<0.0003	<0.002	0.0217	0.497	0.000355 J	0.011	<0.00008	0.0156	<0.0020	<0.0005	0.528	<0.619	1.147
]	10/03/19	<0.0008	0.0083	0.0607	<0.0003	<0.0003	<0.002	0.231	0.419	<0.0003	0.0106	<0.00008	0.0144	<0.0020	<0.0005	0.224	0.241	0.465

TABLE 4
APPENDIX IV ANALYTICAL RESULTS
COLETO CREEK PRIMARY ASH POND

Sample	Date		1 .	_	_			_		I		1				D 000		Ra 226/228
Location	Sampled	Sb	As	Ва	Be	Cd	Cr	Co	FI	Pb	Li	Hg	Мо	Se	TI	Ra 226	Ra 228	Combined
Downgradient Wells																		
MW-4	03/28/17	<0.0025	0.00738	0.0575	<0.001	< 0.001	<0.005	0.007	0.610	<0.001	0.0192	<0.0002	< 0.005	< 0.005	< 0.0015			0.4600
	05/09/17	< 0.0025	0.00733	0.0576	< 0.001	< 0.001	< 0.005	0.007	0.610	< 0.001	0.0182	< 0.0002	<0.005	< 0.005	< 0.0015			0.6940
	05/15/17	< 0.0025	0.00794	0.0556	<0.001	< 0.001	< 0.005	0.007	0.600	<0.001	0.0166	<0.0002	< 0.005	< 0.005	< 0.0015			1.451
	06/06/17	< 0.0025	0.0077	0.0556	< 0.001	< 0.001	< 0.005	0.007	0.630	< 0.001	0.0179	< 0.0002	<0.005	< 0.005	< 0.0015			0.1740
	06/20/17	< 0.0025	0.0081	0.0596	< 0.001	< 0.001	0.00877	0.008	0.620	< 0.001	0.0195	< 0.0002	< 0.005	< 0.005	< 0.0015			0.5430
	06/27/17	< 0.0025	0.00786	0.0554	< 0.001	< 0.001	< 0.005	0.007	0.630	< 0.001	0.0185	< 0.0002	<0.005	< 0.005	< 0.0015			0.6390
	07/10/17	< 0.0025	0.00846	0.0582	< 0.001	< 0.001	< 0.005	0.009	0.620	< 0.001	0.0187	< 0.0002	< 0.005	< 0.005	< 0.0015			1.069
	07/18/17	< 0.0025	0.00815	0.0549	< 0.001	< 0.001	< 0.005	0.008	0.630	< 0.001	0.0183	< 0.0002	< 0.005	< 0.005	< 0.0015			0.1910
	06/21/18	< 0.0025	0.00843	0.0591	< 0.001	< 0.001	< 0.005	0.00711	0.600	<0.00072 J	0.0175	< 0.0002	< 0.005	< 0.005	< 0.0015	0.370	1.705	2.08
	09/18/18	NA	0.00793	0.0577	NA	NA	< 0.002	0.00673	0.582	< 0.0003	0.019	NA	< 0.002	NA	NA	1.610	< 0.543	2.15
	06/05/19	<0.0008	0.0079	0.0571	< 0.0003	< 0.0003	< 0.002	0.00729	0.670	< 0.0003	0.0195	<0.00008	< 0.002	< 0.0020	< 0.0005	0.436	< 0.547	0.98
	10/03/19	<0.0008	0.00764	0.0532	<0.0003	<0.0003	< 0.002	0.00699	0.559	0.00101	0.017	<0.00008	<0.002	< 0.002	< 0.0005	1.85	-0.102	1.85
MW-5	03/30/17	< 0.0025	0.00953	0.0748	< 0.001	< 0.001	< 0.005	< 0.005	0.510	< 0.001	0.0192	< 0.0002	< 0.005	< 0.005	< 0.0015			1.443
	05/10/17	< 0.0025	0.00955	0.0706	< 0.001	< 0.001	< 0.005	< 0.005	0.540	<0.001	0.0179	< 0.0002	< 0.005	< 0.005	< 0.0015			0.6150
	05/16/17	< 0.0025	0.00967	0.0708	< 0.001	< 0.001	< 0.005	< 0.005	0.500	< 0.001	0.0181	< 0.0002	< 0.005	< 0.005	< 0.0015			0.6410
	06/08/17	< 0.0025	0.00908	0.0701	<0.001	<0.001	< 0.005	< 0.005	0.550	< 0.001	0.0200	< 0.0002	< 0.005	< 0.005	< 0.0015			0.1790
	06/21/17	< 0.0025	0.00917	0.0767	< 0.001	< 0.001	< 0.005	< 0.005	0.530	< 0.001	0.0197	< 0.0002	< 0.005	< 0.005	< 0.0015			0.1060
	06/26/17	< 0.0025	0.00955	0.0735	<0.001	<0.001	< 0.005	< 0.005	0.540	< 0.001	0.0204	< 0.0002	< 0.005	< 0.005	< 0.0015			1.112
	07/11/17	< 0.0025	0.00945	0.0712	< 0.001	< 0.001	< 0.005	< 0.005	0.520	< 0.001	0.0183	< 0.0002	< 0.005	< 0.005	< 0.0015			0.5120
	07/19/17	< 0.0025	0.00941	0.0735	< 0.001	<0.001	< 0.005	< 0.005	0.530	<0.001	0.0186	< 0.0002	< 0.005	< 0.005	< 0.0015			0.1910
	06/25/18	< 0.0025	0.00998	0.0733	< 0.001	<0.001	< 0.005	< 0.005	0.560	< 0.001	0.0182	< 0.0002	< 0.005	< 0.005	< 0.0015	< 0.251	<1.369	<1.62
	09/18/18	NA	0.00945	0.0697	NA	NA	< 0.002	< 0.003	0.493	<0.0003	0.0195	NA	<0.002	NA	NA	<0.282	<0.606	<0.89
	06/03/19	<0.0008	0.00948	0.0678	<0.0003	< 0.0003	< 0.002	< 0.003	0.596	<0.0003	0.0206	<0.00008	<0.002	<0.002	< 0.0005	<0.619	<0.917	<1.54
	10/02/19	<0.0008	0.00918	0.067	<0.0003	< 0.0003	< 0.002	< 0.003	0.543	< 0.0003	0.0187	<0.00008	< 0.002	< 0.002	< 0.0005	0.47	0.117	0.587
MW-6	03/29/17	<0.0025	0.00827	0.0900	<0.001	<0.001	< 0.005	< 0.005	0.380	<0.001	<0.010	<0.0002	0.00749	< 0.005	<0.0015			1.009
	05/11/17	< 0.0025	0.00738	0.0758	<0.001	<0.001	< 0.005	< 0.005	0.370	<0.001	0.0101	<0.0002	0.0176	<0.005	<0.0015			0.8250
	05/16/17	< 0.0025	0.00803	0.0784	<0.001	<0.001	< 0.005	<0.005	0.360	<0.001	<0.010	<0.0002	0.0131	< 0.005	<0.0015			0.7740
	06/07/17	< 0.0025	0.00772	0.0798	< 0.001	<0.001	< 0.005	< 0.005	0.370	< 0.001	< 0.010	< 0.0002	0.00949	< 0.005	< 0.0015			0.6640
	06/22/17	<0.0025	0.00764	0.083	<0.001	<0.001	< 0.005	< 0.005	0.370	<0.001	0.0109	<0.0002	0.0084	< 0.005	<0.0015			0.2150
	06/28/17	< 0.0025	0.00779	0.0842	< 0.001	<0.001	<0.005	<0.005	0.370	< 0.001	< 0.010	< 0.0002	0.00806	< 0.005	< 0.0015			1.730
	07/12/17	< 0.0025	0.0077	0.0819	<0.001	<0.001	< 0.005	<0.005	0.350	<0.001	<0.010	<0.0002	0.0076	<0.005	<0.0015			1.012
	07/20/17	<0.0025	0.001	0.0010	<0.001	< 0.001	< 0.005	<0.005	0.390	<0.001	<0.010	<0.0002	0.001	< 0.005	<0.0015			0.3660
	06/22/18	< 0.0025	0.00861	0.0912	<0.001	<0.001	<0.005	<0.005	0.410	<0.001	0.00924 J	<0.0002	0.00837	< 0.005	< 0.0015	< 0.309	<1.243	<1.55
	09/18/18	NA	0.008	0.0828	NA	NA	<0.002	<0.003	0.353 J	0.000349 J	0.0107	NA	0.0274	NA	NA	<0.196	1.06	1.256
	06/03/19	<0.0008	0.00799	0.0894	<0.0003	<0.0003	<0.002	<0.003	0.438	<0.0003	0.00968 J	<0.00008	0.00884	<0.0020	< 0.0005	<0.407	< 0.623	<1.03
	10/02/19	<0.0008	0.00775	0.0876	< 0.0003	<0.0003	< 0.002	< 0.003	0.357 J	< 0.0003	0.00875 J	<0.00008	0.00875	<0.0020	< 0.0005	0.715	1.23	1.94

TABLE 4 APPENDIX IV ANALYTICAL RESULTS COLETO CREEK PRIMARY ASH POND

Sample	Date	Sb	As	Ва	Be	Cd	Cr	Co	FI	Pb	Li	Hg	Мо	Se	TI	Ra 226	Ra 228	Ra 226/228
Location	Sampled	SD	AS	Ба	De	Cu	ū	CO	г	FD	LI	пу	IVIO	Se	"	Na 220	Na 220	Combined
MW-9	03/30/17	< 0.0025	0.00909	0.121	<0.001	<0.001	< 0.005	< 0.005	1.130	0.00217	< 0.010	<0.0002	0.0747	< 0.005	< 0.0015			1.353
	05/10/17	< 0.0025	0.00996	0.105	< 0.001	<0.001	< 0.005	< 0.005	1.290	0.00433	< 0.010	< 0.0002	0.0900	< 0.005	< 0.0015			0.4800
	05/17/17	< 0.0025	0.00958	0.101	< 0.001	<0.001	< 0.005	< 0.005	1.260	0.00377	< 0.010	< 0.0002	0.0899	< 0.005	< 0.0015			0.3600
	06/07/17	< 0.0025	0.0093	0.100	< 0.001	<0.001	< 0.005	< 0.005	1.260	< 0.001000	< 0.010	< 0.0002	0.0926	< 0.005	< 0.0015			0.4760
	06/21/17	< 0.0025	0.00937	0.119	< 0.001	<0.001	< 0.005	< 0.005	1.390	0.00136	< 0.010	< 0.0002	0.1020	< 0.005	< 0.0015	-		1.579
	06/26/17	< 0.0025	0.0107	0.114	< 0.001	<0.001	0.0102	< 0.005	1.400	0.00217	< 0.010	< 0.0002	0.1060	< 0.005	< 0.0015	-		1.023
	07/11/17	< 0.0025	0.0105	0.103	< 0.001	<0.001	0.00566	< 0.005	1.300	0.00124	< 0.010	< 0.0002	0.1050	< 0.005	< 0.0015	-		0.8630
	07/19/17	< 0.0025	0.0103	0.101	< 0.001	<0.001	< 0.005	< 0.005	1.400	< 0.001000	< 0.010	< 0.0002	0.1130	< 0.005	< 0.0015			0.5840
	06/21/18	< 0.0025	0.0104	0.100	<0.001	<0.001	< 0.005	< 0.005	1.500	<0.00072 J	<0.01	< 0.0002	0.0617	< 0.005	< 0.0015	0.608	<1.303	1.91
	09/18/18	NA	0.0103	0.0985	NA	NA	<0.002	< 0.003	1.100	<0.000300	0.00639 J	NA	0.0502	NA	NA	0.618	<0.638	1.26
	06/05/19	<0.0008	0.0109	0.102	<0.0003	<0.0003	<0.002	< 0.003	1.380	< 0.0003	0.00545 J	<0.00008	0.0683	<0.002	< 0.0005	< 0.402	<0.683	<1.085
	10/03/19	<0.0008	0.0109	0.128	0.000689 J	<0.0003	<0.002	0.00337 J	1.410	0.00876	0.0064 J	<0.00008	0.0507	0.0041 J	< 0.0005	0.577	0.747	1.32
MW-10	03/30/17	< 0.0025	0.0110	0.0844	<0.001	<0.001	<0.005	< 0.005	0.540	<0.001	0.0179	<0.0002	0.0342	<0.005	<0.0015			1.439
	05/10/17	<0.0025	0.0146	0.0554	<0.001	<0.001	0.00533	<0.005	0.830	<0.001	0.0122	<0.0002	0.102	<0.005	<0.0015			0.8880
	05/16/17	<0.0025	0.0150	0.0598	<0.001	<0.001	<0.005	<0.005	0.810	<0.001	0.0123	<0.0002	0.0987	<0.005	<0.0015			0.1830
	06/08/17	<0.0025	0.0144	0.0544	<0.001	<0.001	<0.005	< 0.005	0.840	<0.001	0.0115	<0.0002	0.1060	<0.005	< 0.0015			0.06700
	06/21/17	<0.0025	0.0149	0.054	<0.001	<0.001	<0.005	< 0.005	0.840	<0.001	0.0133	<0.0002	0.1130	<0.005	<0.0015			0.7090
	06/26/17	<0.0025	0.0160	0.0587	<0.001	<0.001	0.0177	< 0.005	0.840	< 0.001	0.0137	<0.0002	0.1160	<0.005	<0.0015			0.7180
	07/11/17	<0.0025	0.0149	0.0508	<0.001	<0.001	<0.005	< 0.005	0.840	<0.001	0.0119	<0.0002	0.1140	<0.005	<0.0015			1.713
	07/19/17	< 0.0025	0.0146	0.0633	<0.001	<0.001	0.00963	< 0.005	0.860	<0.001	0.0127	< 0.0002	0.1210	< 0.005	< 0.0015			2.132
	06/22/18	<0.0025	0.0154	0.0692	<0.001	<0.001	<0.005	< 0.005	0.88	<0.00095 J	0.0122	<0.0002	0.134	< 0.005	<0.0015	<0.212	<1.192	<1.40
	09/18/18	NA	0.0140	0.0446	NA	NA	<0.002	<0.003	0.759	<0.0003	0.0141	NA	0.125	NA	NA	0.151	<0.848	0.999
	06/03/19	<0.0008	0.0142	0.0420	<0.0003	<0.0003	<0.002	< 0.003	0.953	<0.0003	0.0139	<0.00008	0.109	<0.002	<0.0005	<0.203	0.814	1.017
	10/02/19	<0.0008	0.0139	0.0406	<0.0003	< 0.0003	<0.002	< 0.003	0.891	<0.0003	0.0127	<0.00008	0.106	< 0.002	< 0.0005	-0.0288	0.901	0.901
MW-11	05/10/17	<0.0025	0.0156	0.0899	<0.001	<0.001	<0.005	< 0.005	0.82	0.00239	0.0125	<0.0002	0.0082	<0.005	<0.0015			0.4560
Ⅱ	05/16/17	<0.0025	0.018	0.0869	<0.001	<0.001	0.00731	<0.005	0.85	0.0113	0.0144	<0.0002	0.00841	<0.005	<0.0015			1.418
	05/18/17	<0.0025	0.0188	0.0779	<0.001	<0.001	<0.005	<0.005	0.94	0.00204	0.0122	<0.0002	0.00781	<0.005	<0.0015			0.6390
	06/07/17	<0.0025	0.0175	0.0835	<0.001	<0.001	<0.005	<0.005	0.93	0.00171	0.0137	<0.0002	0.00744	<0.005	<0.0015			0.5020
	06/21/17	<0.0025	0.0203	0.0822	<0.001	<0.001	<0.005	< 0.005	1.04	0.00322	0.0136	<0.0002	0.00659	<0.005	<0.0015			1.084
	06/26/17	<0.0025	0.0237	0.0954	<0.001	<0.001	0.0131	<0.005	1.00	0.00593	0.0176	<0.0002	0.00796	<0.005	<0.0015			3.067
	07/11/17	<0.0025	0.0212	0.0725	<0.001	<0.001	<0.005	<0.005	1.00	<0.001	0.012	<0.0002	0.00765	<0.005	<0.0015			0.7530
Notos	07/19/17	<0.0025	0.0224	0.0709	<0.001	<0.001	0.00762	<0.005	1.01	0.0018	0.0137	<0.0002	0.00783	<0.005	<0.0015			1.551
	06/21/18	<0.0025	0.0367	0.0805	<0.001	<0.001	<0.005	<0.005	0.96	0.00241	0.0135	<0.0002	0.00465	<0.005	<0.0015	<0.234	<1.312	<1.55
	09/18/18	NA	0.0382	0.0645	NA 0.0000	NA	<0.002	<0.003	0.754	<0.0003	0.0139	NA	0.00445 J	NA	NA	<0.188	0.597	0.785
	06/03/19	<0.0008	0.0379	0.0834	<0.0003	<0.0003	<0.002	<0.003	0.0837	<0.0003	0.0154	<0.00008	0.00316 J	<0.002	<0.0005	<0.481	0.991	1.472
	10/02/19	<0.0008	0.0379	0.0744	<0.0003	<0.0003	<0.002	< 0.003	0.768	0.000391 J	0.014	<0.00008	0.00259 J	<0.002	<0.0005	1.57	0.478	2.040

- 1. All concentrations in mg/L. Ra 226/228 Combined in pCi/L.
- 2. J concentration is below sample quantitation limit; result is an estimate.
- Non-detect Ra isotope results were assigned a value equal to the minimum detectable concentration.
 NA = Not analyzed.

golder.com

DOWNGRADIENT MONITORING WELL LOCATION

UPGRADIENT MONITORING WELL LOCATION

CCR MONITORING UNIT

CLIENT COLETO CREEK POWER LP

PROJECT
COLETO CREEK POWER STATION FANNIN, TEXAS

CONSULTANT

DETAILED SITE PLAN - COLETO CREEK PRIMARY ASH POND

S GOLDER

2019-01-14
AJD
AJD
WFV
WFV

PROJECT NO. 18106453 FIGURE 1 REV. 0

MONITORING WELL BORING LOGS

Appendix B: CCR Groundwater Monitoring Well System Boring Logs

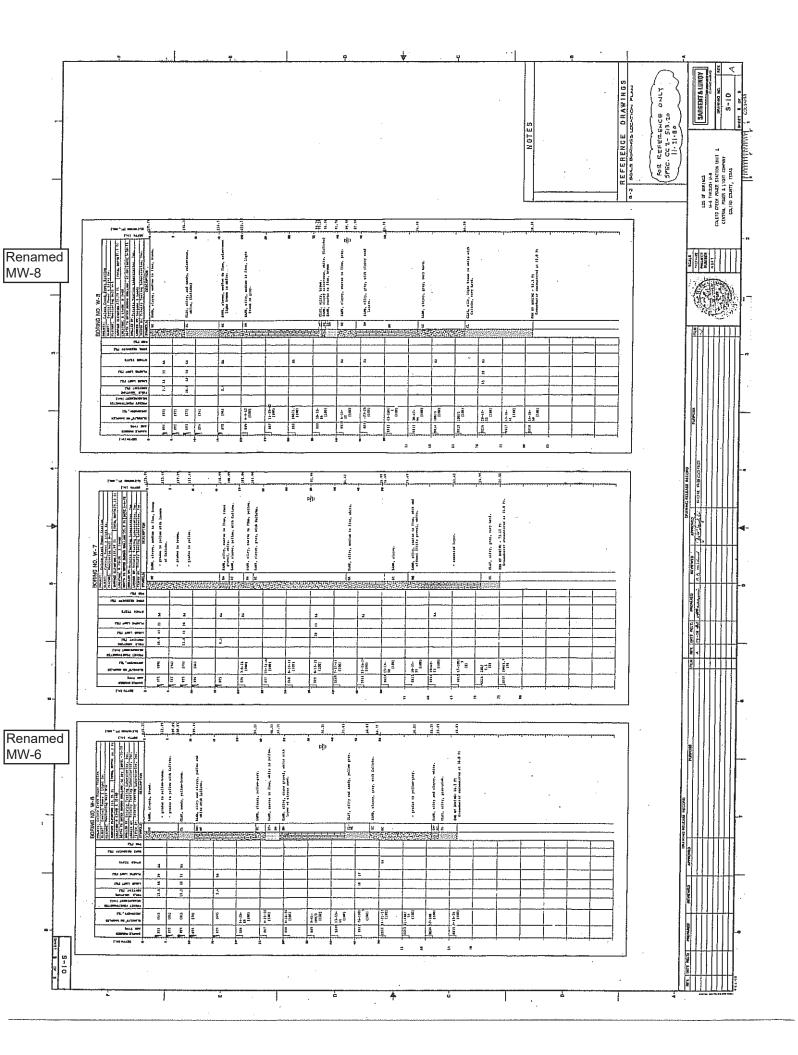
Wells W-4 to W-6 and Well W-8

by Sargent & Lundy Engineers (March and April 1978). These monitoring wells are also designated as MW-4 to MW-6 and MW-8, respectively.

Wells W-9 and W-10

by Bullock, Bennett & Associates, LLC (May 2016). These monitoring wells are also designated as MW-9 and MW-10, respectively.

Well MW-11 by Bullock, Bennett & Associates, LLC (April 2017)


Wells BV-5 and BV-21 by Black & Veatch (August and September 2008)

Renamed MW-4

	1	Γ		<u> </u>			ı		Γ		80	RIN	G NO. W-S Calain Crock Point Median Crettal Yours 6-Light Co.	
1973 1400 10.0		ATTENDED TO THE	th,cord/16" on theman innovate, "is	SECRETARISTES OF SECRETARIAN S	rend konstand egateat feb	Ħ	1		SECONDER		BUT USC BUT BUT BUT LOS TEX	TED E	Britering dell U-i internanti i Nal. 1201 Trota. Biotic 66. 5. FE in 19408 B0460 Botta Baseye Bran. Biotic 19. 079 Botta 6. 3-78. Flyinlly Twented Laboratories, Inc. Flyinlly Twented Laboratories, Inc.	Committee on the
	1	gasr	. (10)		16.Q	49	នា	ıΔ			1000	. # . W	Billo, elopey, modien to fine, brown and yellow.	127-1
10 10 10 10 10 10 10 10	ū-	84			ıi.l	-				-	000000			
	15-		- 4003	-	28.3	43	B	ga .		-		·	s	1
100 100	(9		(69)	_	13,5		-	64	 -	-	303			1
1) eo) esto	7=33-48 (16b)			_						,	a array of secondary stand	, <u>.</u>
10 10 10 10 10 10 10 10	ús.	E37	14-25-4 (100)	-			<u> </u>			-	F .	57" 531	falso, making to firm, terms oils,	, Jan.
	U see	800	39-35-31		-			fié		-		a	CLAT, offer, sens codius to fine sand.	100
	. (SZ)	Pirp.)15-20-10 (100)								100 100	О.	EARD, coelin to fine, yellow, CLAY, cells and couly, yellow, EARD, Siley, coarse to ther, trace graval,	19.3
1011 105/4 100) 1011 105/4 100) 1011	0,] ES 10	t-9t-12				_		-			,	- sumented layer.	61.1 61.1
	go~	استن	47	-	· 			BA.					- Bireded to ended to the stip	ŀ
	(م (3012	105/4						-			III	444	ļ.,
CO 1884 23-30- 50 50 50 50 50 50 50	25	5913	32-40-				_			-				1
CL CLAI, condy, prop. Apr.	eo :	1814	13-30-			-		R4	_	-		SC-	dann and Cravel, «Lorey, Drop.	1
70 1003 10-37- 10075 1	63 -	bass	(100)										CLAY, comiy, gray.	
25 (100) 25 (100) 26 (100) 27 (100) 28 (100) 28 (100) 28 (100) 29 (10	70		(100) 3				_	ga.		-			- precing to palism	1
13517 37-36- 66 (300) 13516 25-51- 56 (100) 13517 37-33- 13517 37-33	- 1	i. •	100/5					-ţ*				511.	Calicho, (Civily) 1860, elicy, coares to fice, police.	ω.,
05 (100) mm of about 0 - 05.5 Ft (100)	60		(100)									ç.	naut, Ment any piens nich incorte ni	-
(100) Geometrator consentated at 62.0 fr.]33.16	36	:		46.	23	44						Lantanara
870,	Î	3219	104					- 1.			777		Geometrator consecutared at 62.8 fx.	147.
			:			1			-				80,2	-

Renamed MW-5 BORING NO. W-5 SHEET ! OF 2 PROJECT: Colera Creek Power Station CLIENT: Central Power & Light Co (f), MSL) FEATURE: Monitoring Well W-5 POCKET PENETROMETER MEASUREMENT (191.) blows/6" on sampler 8 TOTAL DEPTH: 71.5Ft SURFACE ELEVATION: 119.57 Ft FIELD MOSTURE CONTENT (%) LOCATION: N 30+07.7 E 31+50.6 DEPTH TO WATER DUMMS DRILLING:40.0 Ft DATE: 3-30-78 SAMPLE MIRRORER (RECOVERY, %) TIMIT ELEVATION ORILLED BY: Trinity Testing Laboratories, Inc. AKD TYPE PL.ASTIC LOGGEO BY: Sargent & Lundy OTHER LIQUID TESTED BY: Trinity Testing Laboratories, Inc. CORE 800 SYMBOLS DESCRIPTION SAND, SILEY, brown (lopsoil) SAND, clayey, medium to fine, brown. STI 12.8 SA (75) 8 -114.07 CLAY, siley, gray, with Caliche. ST2 (83) 111,57 (83) ST3 SAND, clayey, brown, with layers of SC Caliche. 108.57 ST4 (83) CLAY, silty, yellow and white, with lenses and pockets of Caliche. 15 -104.57 **ST5** (78)3.1 SA SAND, medium to fine, white. 20 -20 556 8-13-20 (100) 25 25 3.57 557 7-47-100 SAND, clayey, calcarects, white. /4.5 (100) (Caliche) 20.57 30 SAND, silty and clayey, white, with SH-558 6-13-31 .lenses and seems of Caliche (100) - grades to gray. 35 35 SS9 14-36-31 (100) Så. 平如影57 SM SS10 1-27-31 (100) SAND, silty, coarse to fine, white 23.57 SS11 16-67-100/5.5 CLAY, silty, gray, with seems of **b**4 15 (100) Caliche. 50 CATE COLETO CREEK POWER STATION DESCRIPTION REVISION APPROVED BY LOG OF BORING W-5 10-24-29 For Use CENTRAL POWER & LIGHT CO. JENGINEERS! PROJECT NUMBER 4857

	DEPTH (FL.)	SAMPLE MUMBER AND TYPE	BLOWS/6" ON SAMPLER	(RECOVERY , %)	POCKET PENETAGMETER	IEASUREMENT (161)	FIELD MOSTURE CONTENT (%)	LIQUID LIMIT (%)	PLASTIC LIMIT (%)	OTHER TESTS	CORE DECOVERY (%)	ROD (%)	N	1VV-5	06РТН (ft.)
0		SS12	1 -	100/	G.	-21	L 0		-	SA	-	=		ABOLS SM-	DESCRIPTION SAND, silty and clayey, calcareous, white, very dense. (Caliche)
	1		(1	100)										SM	SAND, silty, white.
5	1	SS13	50- 130/	74-		_					-		-		
	1			(00						į				SM-	SAND, silty and clayey, calcareous, white and brown, very dense.
0	1	SS14	100	/3.5				18	14	SA					(Caliche)
	1	-	(1	(00											
5	+	5515	18-	78-		-						<u></u>			
	1		100/					-						CL	CLAY, silty, brown.
0	1	SS16	9-1	7-21		-								77.7	end of Boring - 71.5 Ft
	1	.	(a	.00)											Groundwater encountered at 40.0 Ft. and rose to 32.5 Ft.
5	1					-	-								_
	1		:												
	+			\dashv		+	\dashv								
٠															
	+					+				·		-			
	1														1
	+					+									1
	1												-		. 1
	1			+		+	\perp				\dashv				,
	1											٠.			1
	1	l				1	· .			<u>l</u>				1	
	T	DA	TE				<u>.</u>	 -						.	
SION		APPRO	√€D 8		n management de	er sine		D	ESCRI	PTION					COLETO CREEK POWER STATION LOG OF BORING W-5 (cont'd)
	1	10.24. 26. A	7.f	-	For	Us	e					···		十	CENTRAL POWER & LIGHT CO.
	£			7										-	CENTRAL POWER & LIGHT CO.

Renamed Bullock, Bennett & Associates, LLC LOG OF BORING W-9 IMW-9 165 N. Lampasas Street Bertram, TX 78605 (Page 1 of 1) Date 9/15/2015 **Drilling Company** : EnviroCore Easting 2543670.9 **COLETO CREEK POWER STATION** Driller : Craig Schena (Lic. #4694) Northing 13451651.2 FANNIN, TX Drill Rig : CME75 Top of Casing **Drilling Method** : Hollow Stem Auger - 6" Elevation 132.3 ft NAVD 88 Sampling Method : Split-Spoon Logger : EEF Project No. 15215 Surface Elevation Recovery (ft/ft) GRAPHIC USCS WELL DIAGRAM/REMARKS DESCRIPTION 129.3 0.0 (0-2.0) - Fill Material: CLAYEY SAND, mottled light gray and 1.5/2 128 reddish brown, maist 2/2 (2.0-5.5) - Fill Material: Silly CLAY/Clayey SAND, brownish gray to while, soft to firm, Sand is fine to coarse grained, SC/CL 2/2 5.0 124 common caliche gravel, moist 2/2 (5.5-10.0) - Silty CLAY, dark gray to gray with orangish brown mottling, firm to hard, medium plasticity, common catiche gravel, minor roots, moist 2/2 120 Well Construction: 10.0 Riser -3.0' AGL - 40.0' BGL 2/2 Neat Cement: 0' - 2.0' BGL Bentonite chips seal: 2.0' - 38.0' BGL 2/2 116 Sand Pack; 38.0' - 60.0' BGL Screen: 40.0" - 60.0" BGL 15.0 (10.0-20.5) - Predominantly Caliche and Silty CLAY, light gray 2/2 ML/CL to white, Caliche is weakly cemented, low plascificity, dry 2/2 112 2/2 20.0 (20.5-22.0) - SILTY SAND, very light brownish gray, fine to coarse grained, trace of gravel, moist 2/2 108 SM 2/2 Water Level: 25.2' BGL 25.0 212 104 2/2 100 30.0 2/2 (22.0-44.0) - SAND, very light orangish brownish to very light 2/2 SW 96 gray, fine to coarse grained, slightly silty, wet 35.0 2/2 212 92 CENDONAL & GEOD 2/2 40.0 88 5-26-16 2/2 2/2 45.0 84 (44.0-47.0) - SILTY SAND, light gray, fine to coarse grained, wet SM 212 2/2 80 50.0 $(47.0\mbox{-}54.0)$ - Sifty CLAY/Clayey SAND, light gray, soft to firm, Sand is fine to coarse grained, wet SC/CL 2/2 2/2 76 2/2 55.0

SC/SM

2/2

212

(54.0-60.0) - Silty, Clayey SAND, gray, fine to coarse grained,

72

60.0

Bullock, Bennett & Associates, LLC 165 N. Lampasas Street Bertram, TX 78605

LOG OF BORING W-10

Renamed MW-10

(Page 1 of 1)

COLETO CREEK POWER STATION

Date Easting : 9/17/2015 2542864.5

Drilling Company Driller

: EnviroCore

FANNIN, TX

Northing

: 13449694.0

Drill Rig

: Craig Schena (Lic. #4694) : CME75

Top of Casing

Elevation

130.4 ft NAVD 88

Drilling Method Sampling Method : Hollow Stem Auger - 6"

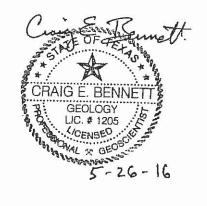
Project No. 15215

60.0

Logger

: EEF

: Split-Spoon


Surface Elevation (fluff.) GRAPHIC Recovery DEPTH (feet) **USCS** DESCRIPTION 127.6

WELL DIAGRAM/REMARKS

0.0 (0-2.0) - Fill Material: SILTY SAND, fine to coarse grained, 2/2 SM brown, clayey, common roots, moist 1.8/2 124 (2.0-8.0) - Silty, Sandy CLAY, mottled organish brown and light 5.0 CL 0/2 gray, firm, medium plasticity, moist 1,7/2 120 2/2 (8.0-11.0) - Silty CLAY/Clayey SAND, light gray, Sand is SC/CL 10.0 medium grained, moist 1.7/2 116 1,8/2 (11.0-19.0) - SILTY SAND, very light gray, medium to coarse 1,B/2 15.0 112 grained, abundant caliche, moist 1.8/2 18/2 108 20.0 1.8/2 1.B/2 104 (19.0-30.0) - SAND, light gray, medium to coase grained, occasional gravel, moist SP 1.8/2 25.0 1 8/2 100 1.8/2 30.0 (30.0-32.0) - Silly CLAY/Clayey SAND, light gray, soft to firm, occasional grave) and caliche, medium plasticity, wet 1.8/2 CL/SC 96 (32.0-34.0) - CLAYEY SAND, brownish gray, soft, very fine, 1.8/2 SC (34.0-36.0) - SILTY SAND, light gray, fine to medium grained, 35.0 1.5/2 92 1.8/2 1.8/2 88 40.0 1.8/2 1.8/2 84 (36.0-52.0) - Silly, Clayey SAND, light gray, fine to coarse SC/SM 45.0 2/2 80 2/2 50.0 1.8/2 76 1.8/2 1.8/2 55.0 72 (52.0-60.0) - SILTY SAND, light gray, fine to coarse grained, SM clayey, wet

Well Construction: Riser ~3.0' AGL - 40.0' BGL Neat Cement: 0' - 2.0' BGL Bentonite chips seal: 2.0' - 38.0' BGL Sand Pack: 38.0' - 60,0' BGL Screen: 40.0' - 60.0' BGL

Water Level: 24.8' BGL

1.5/2

Bullock, Bennett & Associates, LLC 165 N. Lampasas Street Bertram, TX 78605

LOG OF BORING MW-11

(Page 1 of 1)

COLETO CREEK POWER STATION FANNIN, TX

Project No. 17252

: 4/25/2017 Date

Easting : 2543727.0 Northing : 13452676.5

Drilling Company Driller

: EnviroCore : Craig Schena (Lic. #4694)

Drill Rig

: CME75 : Hollow Stem Auger - 6"

Top of Casing Elevation

118.66 ft NAVD 88 Logger

Drilling Method Sampling Method

: Split-Spoon

Surface Elevation Recovery (ft/ft) GRAPHIC **USCS** DESCRIPTION 115.8

WELL DIAGRAM/REMARKS

(0-1.0) - Silty CLAY, dark brown, soft to firm, medium 0.0 CL 2/2 plasticity, minor roots, moist 2/2 (1.0-6.5) - Predominantly Caliche and Silty CLAY, light gray to CL/ML 112 white, Caliche is weakly cemented, low to medium plasciticity, 2/2 5.0 2/2 108 (6.5-13.8) - Silty, Clayey SAND, light gray to white, very fine 10.0 SM 2/2 104 2/2 2/2 15.0 100 2/2 96 20.0 (13.8-28.5) - SAND, very light orangish brownish to very light 2/2 SW gray, fine to coarse grained, abundant gravel, slightly silty, wet 2/2 92 2/2 25.0 2/2 88 //// 111111 30.0 11/11 2/2 111111 84 11/11/11 111111 (28.5-38.0) - Silty, Clayey SAND, gray to light brownish gray, SM/SC very fine to medium grained, wet 11/11 11111 35.0 11111 80 11111 2/2 ///// (38.0-40.0) - Silty CLAY/Clayey SAND, light gray, weakly CL/SC caliche cemented. Sand is fine to medium grained, wet 76 40.0 11111 11111 11111 (40.0-46.0) - Silty, Clayey SAND, gray, fine to medium 11111 SM/SC grained, wet 11111 72 11111 2/2 45.0 ///// 1.5/2 (46.0-49.0) - Silty CLAY/Clayey SAND, light gray, weakly caliche cemented, Sand is fine to medium grained, wet SC 68

Water Level: 11.2' BGL

Well Construction:

Riser ~2.7' AGL - 29.0' BGL Neat Cement: 0' - 1.0' BGL Bentonite chips seal: 1.0' - 27.0' BGL Sand Pack: 27.0' - 49.0' BGL Screen: 29.0' - 49.0' BGL

> CRAIG E. BENNETT LIC #1205

4:19 PM

BORING NO. BV-5

SHEET 1 OF 3 CLIENT PROJECT PROJECT NO. International Power America, Inc. Coleto Creek Unit Two 149116 PROJECT LOCATION COORDINATES **GROUND ELEVATION (DATUM)** TOTAL DEPTH N 327129.3' E 2570579.3' Victoria, Texas 133.0 ft (MSL) 80.0 (feet) SURFACE CONDITIONS **COORDINATE SYSTEM** DATE START DATE FINISHED Grassy, level, tan clayey sand State Plane 9/16/08 9/17/08 LOGGED BY APPROVED BY CHECKED BY SOIL SAMPLING 2ND 6 INCHES SAMPLE RECOVERY 3RD INCHES V Bhadriraju V Bhadriraju SAMPLE SET INCHES N VALUE SAMPL ELEVATION (FEET) 9 9 SAMPLE TYPE GRAPHIC LOG DEPTH (FEET) **ROCK CORING CLASSIFICATION OF MATERIALS** REMARKS RQD RECOVERY PERCENT RECOVERY RUN RECOVERY RUN CORE RUN Rab Clayey SAND; brownish gray; medium dense; moist; Boring advanced SPT 7 1 3 18 1.0 w/ 3-1/4" ID fine grained; poorly graded; some roots hollow stem 2 auger. SPT performed w/ 130 @ 3.0'-3.2' yellowish brown fine to medium sand auto hammer. SPT 2 10 21 13 11 1.2 partings; roots grade out Sand partings are vertical and dry. 128 grading light gray w/ some black mottling SPT 3 6 10 13 23 1.2 6 126 SPT 4 б 10 13 23 1.1 124 10 grading w/some light brown staining CA 5 14 19 33 1.4 122 6 12 -12.5CLAY; white; hard; moist; low plasticity; frequent 120 pockets of gray fine grained clayey sand 14 SPT 36 6 13 16 20 1.5 118 16 116 18 grading w/ frequent pockets of gray & light brown clay 114 7 CA 19 30 28 58 1.5 20 SAND; grayish white; moist; fine to medium grained; 112 poorly graded 22 110 grading medium dense w/trace angular gravel 24 SPT 8 8 16 1.5 6 @ 24.0' gravel grades out 108 $\underline{\underline{\nabla}}$ Encountered 26 water @ 25.5' during drilling 106 28 Sand in augers. grading very dense 104 SPT 9 50/5" >50 0.3 Augers being @29.2' calcareous sand nodules; some white silt w/

4:19 PM

SHEET 2 OF 3 CLIENT PROJECT PROJECT NO. International Power America, Inc. Coleto Creek Unit Two 149116 PROJECT LOCATION COORDINATES **GROUND ELEVATION (DATUM)** TOTAL DEPTH 133.0 ft (MSL) Victoria, Texas N 327129.31 E 2570579.3' 80.0 (feet) SURFACE CONDITIONS **COORDINATE SYSTEM** DATE START DATE FINISHED Grassy, level, tan clayey sand State Plane 9/16/08 9/17/08 SOIL SAMPLING LOGGED BY **CHECKED BY** APPROVED BY V Bhadriraju SET 6 INCHES 2ND 6 INCHES SAMPLE RECOVERY V Bhadriraju SAMPLE N VALUE 3RD INCHI SAMPL ELEVATION (FEET SAMPLE TYPE GRAPHIC LOG DEPTH (FEET) **ROCK CORING CLASSIFICATION OF MATERIALS** REMARKS RQD RECOVERY RUN PERCENT RECOVERY RUN RUN 30 chalk nodules driven along w/ spoon. 102 Below 28.5' continued w/ 32 rotary wash 100 method using 4" drag bit & grading medium dense; wet; fine to medium grained; 34 SPT 10 6 8 18 0.9 bentonite slurry 10 well graded as drilling fluid. 98 Driller reported trace gravel from 36 28.5'-38.5'. 96 38 grading very dense 94 SPT 11 33 38 71 1.5 @ 38.5'-39.3' yellow silty clay layer @ 39.3' grading grayish white w/ fine grained sand & 40 Based on driller's some silt comments. 92 Clayey SAND; light gray; dense; moist; fine grained; poorly graded 42 90 44 SPT 12 16 21 1.5 12 37 88 46 86 48 grading light brown; silt grades out 84 SPT 13 12 17 20 37 1.5 50 82 52 80 grading fine to medium grained 54 SPT 14 17 40 33 73 0.9 78 some angular gravel 56 Driller reported 76 alternating hard and soft drilling 58 efforts. grading w/ white fine sand; some clay cementation 74 SPT 15 7 50/3" >50 0.3

4:19 PM

1/15/2009

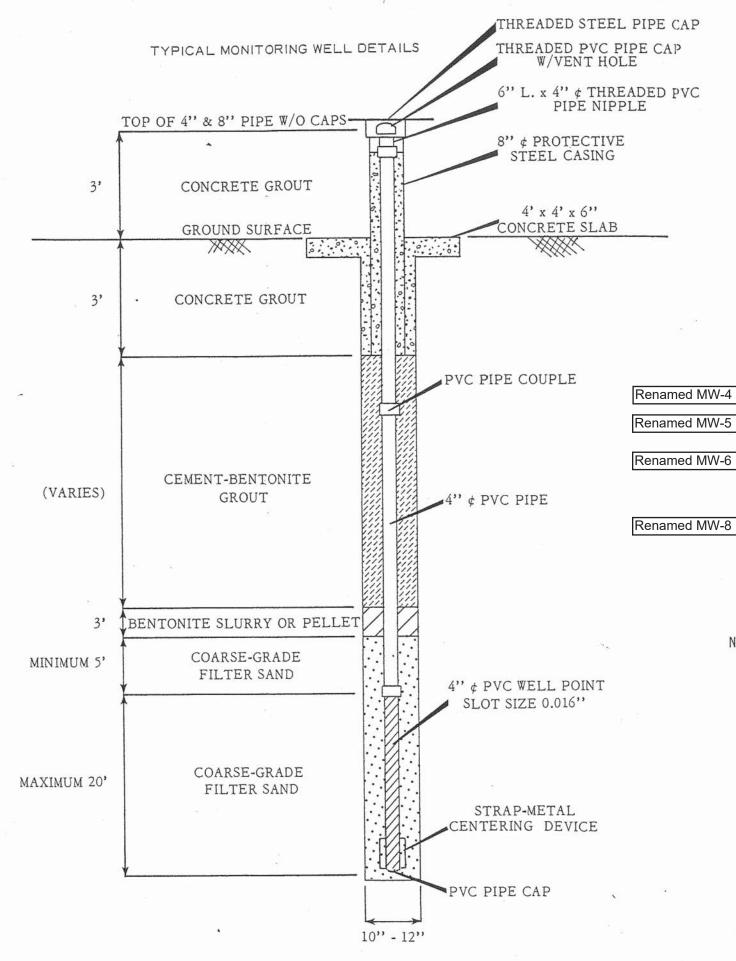
SHEET 3 OF 3 CLIENT **PROJECT** PROJECT NO. International Power America, Inc. Coleto Creek Unit Two 149116 PROJECT LOCATION **COORDINATES GROUND ELEVATION (DATUM)** TOTAL DEPTH Victoria, Texas N 327129.3' E 2570579.3° 133.0 ft (MSL) 80.0 (feet) SURFACE CONDITIONS COORDINATE SYSTEM DATE START DATE FINISHED Grassy, level, tan clayey sand State Plane 9/16/08 9/17/08 LOGGED BY CHECKED BY SOIL SAMPLING APPROVED BY SAMPLE RECOVERY 2ND 6 INCHES V Bhadriraju V Bhadriraju SAMPLE SAMPLE N VALUE SET 6 INCHE 3RD 6 INCHE ELEVATION (FEET) SAMPLE TYPE GRAPHIC LOG DEPTH (FEET) **ROCK CORING CLASSIFICATION OF MATERIALS** REMARKS RECOVERY
RAD
RECOVERY
PERCENT
RECOVERY RUN Based on driller's Silty SAND; white; very dense; moist; fine grained; comments & 72 poorly graded; some pockets of light brown clay; highly cuttings from cemented 62 rotary wash. 70 64 SPT 16 50/4" >50 0.2 68 66 66 68 grading w/ trace angular to subangular gravel; clay 64 SPT 17 50/3 >50 0.3 pockets grade to trace 70 62 72 60 No clay cuttings CLAY; dark tan; hard; moist; low plasticity; some sand 74 SPT 1.5 18 12 17 22 39 in drilling fluid @ 74.5' yellowish gray return. 58 76 56 78 54 SPT 19 13 17 22 39 1.5 80 Bottom of boring @ 80.0'. Water 52 level recorded @ 24.6' after 24 82 hours. Borina 50 backfilled w/ bentonite pallets 84 to 42.5' on 09/17/ 08. Piezometer 48 PZ-5 set from 86 30.0' to 40.0'. Boring backfilled 46 with cement bentonite grout to 88 ground surface. 44

4:19 PM

1/15/2009

SHEET 1 OF 3 CLIENT PROJECT NO. International Power America, Inc Coleto Creek Unit Two 149116 PROJECT LOCATION COORDINATES **GROUND ELEVATION (DATUM)** TOTAL DEPTH Victoria, Texas N 328659.71 E 2571578.7' 128.4 ft (MSL) 80.0 (feet) SURFACE CONDITIONS **COORDINATE SYSTEM DATE START** DATE FINISHED Level, loose, silty sand State 9/8/08 9/8/08 LOGGED BY SOIL SAMPLING CHECKED BY APPROVED BY SET 6 INCHES 2ND 6 INCHES SAMPLE RECOVERY V. Bhadriraju V Bhadriraju SAMPLE SAMPLE 6 INCHES N VALUE ELEVATION (FEET) SAMPLE TYPE GRAPHIC LOG DEPTH (FEET) **ROCK CORING CLASSIFICATION OF MATERIALS** REMARKS RUN RECOVERY PERCENT RECOVERY RECOVERY RUN CORE Rab ROD SAND; dark brown; loose; moist; fine grained; poorly 128 Boring advanced SPT 1 2 5 7 0.9 1 graded w/3-1/4" ID hollow stem Clayey SAND; light brown; medium dense; moist; fine 2 auger. SPT 126 grained; poorly graded performed w/auto SPT 2 5 5 11 hammer. 6 1.5 grading light gray; some black mottling & trace roots 124 grading w/trace chalk nodules; roots grade out SPT 3 6 4 9 15 1.5 6 122 grading w/frequent seams of chalk nodules 8 SPT 4 5 6 8 14 1.1 120 Clayey SAND; light gray; moist; fine to medium 10 118 grained; poorly graded; trace gravel CA 5 3 3 4 7 1.5 12 grading w/highly cemented calcareous sand 116 Silty SAND; grayish white; very dense; moist; fine grained; poorly graded 14 SPT 6 22 50/3 >50 0.7 114 16 112 \subseteq Water 18 grading orange; wet; fine to medium grained; trace 110 encountered calcareous sand nodules during drilling @ SPT 7 24 50 50/4 >50 0.9 17.6'. 20 Driller reports 108 softer drilling. Below 18.5' continued w/ 22 rotary wash 106 method using 4" drag bit & CLAY; light gray; very stiff; moist; high plasticity; some bentonite slurry 24 SPT 5 6 14 20 1.5 104 light brown clay pockets as drilling fluid. White silt & fine SAND; light gray; very dense; wet; fine to coarse sand in bottom of 26 grained; well graded; w/trace gravel 102 SPT-8 28 100 SPT 9 20 48 48 96 1.5

4:19 PM


SHEET 2 OF 3 CLIENT **PROJECT** PROJECT NO. International Power America, Inc Coleto Creek Unit Two 149116 PROJECT LOCATION COORDINATES **GROUND ELEVATION (DATUM) TOTAL DEPTH** Victoria, Texas N 328659.7' E 2571578.7' 128.4 ft (MSL) 80.0 (feet) SURFACE CONDITIONS **COORDINATE SYSTEM** DATE START DATE FINISHED Level, loose, silty sand State 9/8/08 9/8/08 SOIL SAMPLING LOGGED BY CHECKED BY APPROVED BY SAMPLE RECOVERY SET 6 INCHES 2ND 6 INCHES 3RD INCHES V. Bhadriraju SAMPLE V Bhadriraju VALUE ELEVATION (FEET) 6 SAMPLE TYPE GRAPHIC LOG DEPTH (FEET) **ROCK CORING CLASSIFICATION OF MATERIALS** REMARKS RQD RECOVERY RUN RUN LENGTH RUN RECOVERY PERCENT RECOVERY 30 grading grayish white; fine grained; poorly graded; w/ 98 trace clay & some grave! 96 grading fine to medium grained; clay & gravel grade out 34 SPT 10 33 50/4" >50 0.4 @ 34.0'-35.0' 94 boulder encountered. 36 Hard drilling. 92 Drilled through w/ 4" tricone driller bit. Driller 38 reported 90 limestone in grading w/occasional light brown clay pockets cuttings. SPT 11 9 24 40 64 1.4 40 Continued w/4" 88 paddle bit. 39.0'- 43.2' driller @ 40.5' white clayey silt & some chalk nodules Silty CLAY; grayish white; hard; moist; low plasticity; w/ reported clay like 42 some light gray fine sand pockets drilling. 86 SPT 12 13 39 50/4" >50 1.1 84 46 82 CA 13 30 45 50/5" >50 1.0 grading w/limestone nodules 48 SAND; light gray; wet; fine grained; poorly graded; 80 highly cemented SPT 14 36 50/5" >50 1.0 @ 47.2' grading light brown; fine to medium grained; cementation grades out 50 7R Sandy CLAY; grayish white; hard; dry; low plasticity 52 76 54 SPT 15 17 30 32 1.5 62 SAND; light brown; very dense; wet; fine to medium grained; poorly graded; some gravel & coarse sand sized chalk nodules; occasional light brown clay 56 pockets 58 70 16 50/4 >50 0.3

4:19 PM

1/15/2009

SHEET 3 OF 3 CLIENT PROJECT PROJECT NO. International Power America, Inc. Coleto Creek Unit Two 149116 PROJECT LOCATION COORDINATES **GROUND ELEVATION (DATUM) TOTAL DEPTH** Victoria, Texas N 328659.7' E 2571578.7 128.4 ft (MSL) 80.0 (feet) SURFACE CONDITIONS **COORDINATE SYSTEM** DATE START **DATE FINISHED** Level, loose, silty sand State 9/8/08 9/8/08 LOGGED BY SOIL SAMPLING CHECKED BY APPROVED BY SAMPLE RECOVERY 2ND 6 INCHES 3RD 6 INCHES V. Bhadriraju SET INCHES SAMPLE V Bhadriraju N VALUE SAMPLE ELEVATION (FEET) SAMPLE TYPE **GRAPHIC LOG** DEPTH (FEET) **ROCK CORING CLASSIFICATION OF MATERIALS** REMARKS PERCENT RECOVERY RUN RECOVERY RQD RECOVERY RUN NUMBER RUN LENGTH Rab 60 68 @ 60.0' white chalk layer Clay cuttings CLAY; yellowish gray; hard; moist; high plasticity from rotary wash 62 66 64 SPT 17 11 20 25 45 1.5 64 66 62 68 60 grading w/frequent partings of grayish white fine sand SPT 18 18 25 25 50 1.5 w/gravel sized chalk nodules 70 58 72 56 @ 73.5'-74.0' light brown 74 SPT 19 14 27 27 54 1.5 54 fine sand partings grade to occasional 52 78 50 SPT 20 18 18 29 47 1.5 SAND; grayish white; dense; moist; fine grained; poorly 80 graded; trace clay Bottom of boring 48 @ 80.0'. Water level recorded @ 82 16.3' after 24 46 hours. Boring backfilled w/ bentonite pallets 84 to 42.5' on 09/09/ 44 08. Piezometer PZ-21 set from 30.0' to 40.0'. 86 42 Boring backfilled with cement bentonite grout to 88 ground surface. 40

MONITORING WELL CONSTRUCTION FORMS

AS-BUILT DETAILS

Well No.	Elevation Top of PVC	Elevation Ground Surface	Elevation Top of Gravelpack	Elevation Top Well Screen	Elevation Bottom of Well
W-1	114.78	112.0	89.8	80.2	60.0
W-2	127.38	124.2	93.3	85.0	65.2
W-3	132.49	129.3	97.5	89.5	70.2
W-4	137.71	134.3	110.5	* 83.8	64.2
W-5	122.31	119.0	85.8	80.1	60.3
W-6	119.22	116.4	82.2	75.1	55.2
W-7	130.07	127.0	80.4	74.9	50.1
W-8	134.72	131.8	103.0	94.8	74.9

NOTES: 1. ELEVATIONS ARE IN FT ABOVE MSL

- 2. MONITORING WELLS WERE INSTALLED USING TEMPORARY STEEL CASING TO EXCLUDE CAVING SOILS FROM CONTAMINATING WELL
- 3. MONITORING WELLS WERE INSTALLED AND DISINFECTED TO THE REQUIREMENTS OF SARGENT & LUNDY TECHNICAL SPECIFICATION FOR SOIL BORING AND MONITORING WELL WORK

SUMMARY OF GROUNDWATER MONITORING WELL DETAILS

SARGENT&LUNDY

STATE OF TEXAS WELL REPORT for Tracking #423117

Owner: IPA Operations, Inc. Owner Well #: W-9 Renamed MW-9

Address: Coleto Creek Power LP Grid #: 79-23-2

PO Box 8

Fannin, TX 77960 Latitude: 28° 43' 27" N

Proposed Use:

Monitor

Well Location: Coletto Creek Power Plant Longitude: 097° 12' 19" W

Fannin, TX 77960

Well County: Goliad Elevation: No Data

Drilling Start Date: 9/16/2015 Drilling End Date: 9/17/2015

Diameter (in.) Top Depth (ft.) Bottom Depth (ft.)

Borehole: 6 0 60

Drilling Method: Hollow Stem Auger

Borehole Completion: Filter Packed

Type of Work: New Well

Filter Pack Intervals:

Top Depth (ft.)

Bottom Depth (ft.)

Filter Material

Size

16/30

Annular Seal Data:

Top Depth (ft.)

Bottom Depth (ft.)

Description (number of sacks & material)

Cement 1 Bags/Sacks

2 38 Bentonite 15 Bags/Sacks

Seal Method: **Hand Mixed** Distance to Property Line (ft.): **No Data**

Sealed By: Driller Distance to Septic Field or other

concentrated contamination (ft.): No Data

Distance to Septic Tank (ft.): No Data

Method of Verification: No Data

Surface Completion: Surface Slab Installed Surface Completion by Driller

Water Level: 25.2 ft. below land surface on 2015-09-18 Measurement Method: water level meter

Packers: No Data

Type of Pump: No Data

Well Tests: No Test Data Specified

Water Quality:

Strata Depth (ft.)	Water Type
No Data	No Data

Chemical Analysis Made: No

Did the driller knowingly penetrate any strata which contained injurious constituents?: **No**

Certification Data: The driller certified that the driller drilled this well (or the well was drilled under the

driller's direct supervision) and that each and all of the statements herein are true and correct. The driller understood that failure to complete the required items will result in

the report(s) being returned for completion and resubmittal.

Company Information: EnviroCore, Inc.

7525 Idle Hour Dr.

Corpus Christi, TX 78414

Driller Name: Craig Schena License Number: 4694

Comments: No Data

Report Amended on 5/26/2016 by Request #17930

Lithology: DESCRIPTION & COLOR OF FORMATION MATERIAL

Top (ft.)	Bottom (ft.)	Description		
0	2	fill material		
2	5.5	silty clay/clayey sand;brownish gray to white		
5.5	10	silty clay; dark gray		
10	20.5	caliche and silty clay;light gray to white		
20.5	22	silty sand;brownish gray		
22	44	sand; light orangish brown		
44	47	silty sand; light gray		
47	54	silty clay/clayey sand; light gray		
54	60	silty, clayey sand; gray		

Casing: BLANK PIPE & WELL SCREEN DATA

Dla (in.)	Туре	Material	Sch./Gage	Top (ft.)	Bottom (ft.)
2	Riser	New Plastic (PVC)	40	-3	40
2	Screen	New Plastic (PVC)	10	40	60

IMPORTANT NOTICE FOR PERSONS HAVING WELLS DRILLED CONCERNING CONFIDENTIALITY

TEX. OCC. CODE Title 12, Chapter 1901.251, authorizes the owner (owner or the person for whom the well was drilled) to keep information in Well Reports confidential. The Department shall hold the contents of the well log confidential and not a matter of public record if it receives, by certified mail, a written request to do so from the owner.

Please include the report's Tracking Number on your written request.

Texas Department of Licensing and Regulation P.O. Box 12157 Austin, TX 78711 (512) 463-7880 **STATE OF TEXAS WELL REPORT for Tracking #423118**

Owner: **IPA** Operations, Inc. Owner Well #: W-10 Renamed MW-10

Address:

Coleto Creek Power LP

Grid #: 79-23-2

PO Box 8

Fannin, TX 77960

Latitude:

28° 43' 27" N

Well Location:

Longitude:

097° 12' 19" W

Fannin, TX 77960

Coletto Creek Power Plant

Well County:

Goliad

Elevation:

No Data

Type of Work: New Well

Proposed Use:

Monitor

Drilling Start Date: 9/15/2015

Drilling End Date: 9/15/2015

Borehole:

Diameter (in.)	Top Depth (ft.)	Bottom Depth (ft.)
6	0	60

Drilling Method:

Hollow Stem Auger

Borehole Completion:

Filter Packed

Filter	Pack	Intervals:

Top Depth (ft.)	Bottom Depth (ft.)	Filter Material	Size
38	60	Sand	16/30

Annular Seal Data:

No Data

Seal Method: Hand Mixed

Distance to Property Line (ft.): No Data

Sealed By: Driller

Distance to Septic Field or other

concentrated contamination (ft.): No Data

Distance to Septic Tank (ft.): No Data

Method of Verification: No Data

Surface Completion:

Surface Slab Installed

Surface Completion by Driller

Water Level:

24.8 ft. below land surface on 2015-09-18 Measurement Method: water level meter

Packers:

No Data

Type of Pump:

No Data

Well Tests:

No Test Data Specified

Water Quality:

Strata Depth (ft.)	Water Type
No Data	No Data

Chemical Analysis Made: No

Did the driller knowingly penetrate any strata which contained injurious constituents?: **No**

Certification Data: The driller certified that the driller drilled this well (or the well was drilled under the

driller's direct supervision) and that each and all of the statements herein are true and correct. The driller understood that failure to complete the required items will result in

the report(s) being returned for completion and resubmittal.

Company Information: EnviroCore, Inc.

7525 Idle Hour Dr.

Corpus Christi, TX 78414

Driller Name: Craig Schena License Number: 4694

Comments: No Data

Report Amended on 5/26/2016 by Request #17931

Lithology: DESCRIPTION & COLOR OF FORMATION MATERIAL

Top (ft.)	Bottom (ft.)	Description
0	2	fill material
2	8	silty sandy clay; orangish brown
8	11	silty clay/clayey sand; light gray
11	19	silty sand; light gray
19	30	sand; light gray
30	32	silty clay/clayey sand; light gray
32	34	clayey sand; brownish gray
34	36	silty sand; light gray
36	52	silty, clayey sand; light gray
52	60	silty sand; light gray

Casing: BLANK PIPE & WELL SCREEN DATA

Dla (in.)	Туре	Material	Sch./Gage	Top (ft.)	Bottom (ft.)
2	Riser	New Plastic (PVC)	40	-3	40
2	Screen	New Plastic (PVC)	10	40	60

IMPORTANT NOTICE FOR PERSONS HAVING WELLS DRILLED CONCERNING CONFIDENTIALITY

TEX. OCC. CODE Title 12, Chapter 1901.251, authorizes the owner (owner or the person for whom the well was drilled) to keep information in Well Reports confidential. The Department shall hold the contents of the well log confidential and not a matter of public record if it receives, by certified mail, a written request to do so from the owner.

Please include the report's Tracking Number on your written request.

Texas Department of Licensing and Regulation P.O. Box 12157 Austin, TX 78711 (512) 463-7880

STATE OF TEXAS WELL REPORT for Tracking #462686

Owner: Dynegy Inc. Owner Well #: MW-11

Address: Coleto Creek Power Station Grid #: 79-23-2

PO Box 8

Fannin, TX 77960 Latitude: 28° 43' 37.02" N

Well Location: Coleto Creek Power Station Longitude: 097° 12' 18.36" W

Fannin, TX

Elevation: No Data

Well County: Goliad

Type of Work: New Well Proposed Use: Monitor

Drilling Start Date: 4/25/2017 Drilling End Date: 4/25/2017

 Diameter (in.)
 Top Depth (ft.)
 Bottom Depth (ft.)

 Borehole:
 6
 0
 49

Drilling Method: Hollow Stem Auger

Borehole Completion: Filter Packed

Top Depth (ft.) Bottom Depth (ft.) Filter Material Size

Filter Pack Intervals: 27 49 Sand 16/30

Annular Seal Data:

Top Depth (ft.)

Bottom Depth (ft.)

Description (number of sacks & material)

Cement 1 Bags/Sacks

1 27 Bentonite 13 Bags/Sacks

Seal Method: **Hand Mixed** Distance to Property Line (ft.): **No Data**

Sealed By: **Driller**Distance to Septic Field or other

concentrated contamination (ft.): No Data

Distance to Septic Tank (ft.): No Data

Method of Verification: No Data

Surface Completion: Surface Slab Installed Surface Completion by Driller

Water Level: No Data

Packers: No Data

Type of Pump: No Data

Well Tests: No Test Data Specified

Water Quality:

Strata Depth (ft.)	Water Type
No Data	No Data

Chemical Analysis Made: No

Did the driller knowingly penetrate any strata which

contained injurious constituents?: No

The driller did certify that while drilling, deepening or otherwise altering the above described well, injurious water or constituents was encountered and the landowner or person having the well drilled was informed that such well must be completed or plugged in such a manner as to avoid injury or pollution.

Certification Data: The driller certified that the driller drilled this well (or the well was drilled under the

driller's direct supervision) and that each and all of the statements herein are true and correct. The driller understood that failure to complete the required items will result in

the report(s) being returned for completion and resubmittal.

Company Information: EnviroCore, Inc.

7525 Idle Hour Dr.

Corpus Christi, TX 78414

Driller Name: Craig Schena License Number: 4694

Comments: No Data

Lithology: DESCRIPTION & COLOR OF FORMATION MATERIAL

Top (ft.)	Bottom (ft.)	Description			
0	1	0-1.0 - Silty CLAY			
1	6.5	Predominately Caliche and Silty Clay			
6.5	13.8	Silty Clayey Sand			
13.8	28.5	Sand with abundant gravel			
28.5	38	Silty Clayey Sand			
38	40	Silty Clay/Clayey Sand			
40	46	Silty Clayey Sand			
46	49	Silty Clay/Clayey Sand			

Casing: BLANK PIPE & WELL SCREEN DATA

Dla (in.)	Туре	Material	Sch./Gage	Top (ft.)	Bottom (ft.)
2	Riser	New Plastic (PVC)	40	-3	29
2	Screen	New Plastic (PVC)	40 10	29	49

IMPORTANT NOTICE FOR PERSONS HAVING WELLS DRILLED CONCERNING CONFIDENTIALITY

TEX. OCC. CODE Title 12, Chapter 1901.251, authorizes the owner (owner or the person for whom the well was drilled) to keep information in Well Reports confidential. The Department shall hold the contents of the well log confidential and not a matter of public record if it receives, by certified mail, a written request to do so from the owner.

Please include the report's Tracking Number on your written request.

Texas Department of Licensing and Regulation P.O. Box 12157 Austin, TX 78711 (512) 334-5540

Bullock, Bennett & Associates, LLC 165 N. Lampasas Street Bertram, TX 78605

LOG OF BORING MW-11

(Page 1 of 1)

COLETO CREEK POWER STATION FANNIN, TX

Project No. 17252

: 4/25/2017 Date

Easting : 2543727.0 Northing : 13452676.5

Drilling Company Driller

: EnviroCore : Craig Schena (Lic. #4694)

Drill Rig

: CME75 : Hollow Stem Auger - 6"

Top of Casing Elevation

118.66 ft NAVD 88 Logger

Drilling Method Sampling Method

: Split-Spoon

Surface Elevation Recovery (ft/ft) GRAPHIC **USCS** DESCRIPTION 115.8

WELL DIAGRAM/REMARKS

(0-1.0) - Silty CLAY, dark brown, soft to firm, medium 0.0 CL 2/2 plasticity, minor roots, moist 2/2 (1.0-6.5) - Predominantly Caliche and Silty CLAY, light gray to CL/ML 112 white, Caliche is weakly cemented, low to medium plasciticity, 2/2 5.0 2/2 108 (6.5-13.8) - Silty, Clayey SAND, light gray to white, very fine 10.0 SM 2/2 104 2/2 2/2 15.0 100 2/2 96 20.0 (13.8-28.5) - SAND, very light orangish brownish to very light 2/2 SW gray, fine to coarse grained, abundant gravel, slightly silty, wet 2/2 92 2/2 25.0 2/2 88 //// 111111 30.0 11/11 2/2 111111 84 11/11/11 111111 (28.5-38.0) - Silty, Clayey SAND, gray to light brownish gray, SM/SC very fine to medium grained, wet 11/11 11111 35.0 11111 80 11111 2/2 ///// (38.0-40.0) - Silty CLAY/Clayey SAND, light gray, weakly CL/SC caliche cemented. Sand is fine to medium grained, wet 76 40.0 11111 11111 11111 (40.0-46.0) - Silty, Clayey SAND, gray, fine to medium 11111 SM/SC grained, wet 11111 72 11111 2/2 45.0 ///// 1.5/2 (46.0-49.0) - Silty CLAY/Clayey SAND, light gray, weakly caliche cemented, Sand is fine to medium grained, wet SC 68

Water Level: 11.2' BGL

Well Construction:

Riser ~2.7' AGL - 29.0' BGL Neat Cement: 0' - 1.0' BGL Bentonite chips seal: 1.0' - 27.0' BGL Sand Pack: 27.0' - 49.0' BGL Screen: 29.0' - 49.0' BGL

> CRAIG E. BENNETT LIC #1205

4:19 PM

BORING NO. BV-5

SHEET 1 OF 3 CLIENT PROJECT PROJECT NO. International Power America, Inc. Coleto Creek Unit Two 149116 PROJECT LOCATION COORDINATES **GROUND ELEVATION (DATUM)** TOTAL DEPTH N 327129.3' E 2570579.3' Victoria, Texas 133.0 ft (MSL) 80.0 (feet) SURFACE CONDITIONS **COORDINATE SYSTEM** DATE START DATE FINISHED Grassy, level, tan clayey sand State Plane 9/16/08 9/17/08 LOGGED BY APPROVED BY CHECKED BY SOIL SAMPLING 2ND 6 INCHES SAMPLE RECOVERY 3RD INCHES V Bhadriraju V Bhadriraju SAMPLE SET INCHES N VALUE SAMPL ELEVATION (FEET) 9 9 SAMPLE TYPE GRAPHIC LOG DEPTH (FEET) **ROCK CORING CLASSIFICATION OF MATERIALS** REMARKS RQD RECOVERY PERCENT RECOVERY RUN RECOVERY RUN CORE RUN Rab Clayey SAND; brownish gray; medium dense; moist; Boring advanced SPT 7 1 3 18 1.0 w/ 3-1/4" ID fine grained; poorly graded; some roots hollow stem 2 auger. SPT performed w/ 130 @ 3.0'-3.2' yellowish brown fine to medium sand auto hammer. SPT 2 10 21 13 11 1.2 partings; roots grade out Sand partings are vertical and dry. 128 grading light gray w/ some black mottling SPT 3 6 10 13 23 1.2 6 126 SPT 4 б 10 13 23 1.1 124 10 grading w/some light brown staining CA 5 14 19 33 1.4 122 6 12 -12.5CLAY; white; hard; moist; low plasticity; frequent 120 pockets of gray fine grained clayey sand 14 SPT 36 6 13 16 20 1.5 118 16 116 18 grading w/ frequent pockets of gray & light brown clay 114 7 CA 19 30 28 58 1.5 20 SAND; grayish white; moist; fine to medium grained; 112 poorly graded 22 110 grading medium dense w/trace angular gravel 24 SPT 8 8 16 1.5 6 @ 24.0' gravel grades out 108 $\underline{\underline{\nabla}}$ Encountered 26 water @ 25.5' during drilling 106 28 Sand in augers. grading very dense 104 SPT 9 50/5" >50 0.3 Augers being @29.2' calcareous sand nodules; some white silt w/

4:19 PM

SHEET 2 OF 3 CLIENT PROJECT PROJECT NO. International Power America, Inc. Coleto Creek Unit Two 149116 PROJECT LOCATION COORDINATES **GROUND ELEVATION (DATUM)** TOTAL DEPTH 133.0 ft (MSL) Victoria, Texas N 327129.31 E 2570579.3' 80.0 (feet) SURFACE CONDITIONS **COORDINATE SYSTEM** DATE START DATE FINISHED Grassy, level, tan clayey sand State Plane 9/16/08 9/17/08 SOIL SAMPLING LOGGED BY **CHECKED BY** APPROVED BY V Bhadriraju SET 6 INCHES 2ND 6 INCHES SAMPLE RECOVERY V Bhadriraju SAMPLE N VALUE 3RD INCHI SAMPL ELEVATION (FEET SAMPLE TYPE GRAPHIC LOG DEPTH (FEET) **ROCK CORING CLASSIFICATION OF MATERIALS** REMARKS RQD RECOVERY RUN PERCENT RECOVERY RUN RUN 30 chalk nodules driven along w/ spoon. 102 Below 28.5' continued w/ 32 rotary wash 100 method using 4" drag bit & grading medium dense; wet; fine to medium grained; 34 SPT 10 6 8 18 0.9 bentonite slurry 10 well graded as drilling fluid. 98 Driller reported trace gravel from 36 28.5'-38.5'. 96 38 grading very dense 94 SPT 11 33 38 71 1.5 @ 38.5'-39.3' yellow silty clay layer @ 39.3' grading grayish white w/ fine grained sand & 40 Based on driller's some silt comments. 92 Clayey SAND; light gray; dense; moist; fine grained; poorly graded 42 90 44 SPT 12 16 21 1.5 12 37 88 46 86 48 grading light brown; silt grades out 84 SPT 13 12 17 20 37 1.5 50 82 52 80 grading fine to medium grained 54 SPT 14 17 40 33 73 0.9 78 some angular gravel 56 Driller reported 76 alternating hard and soft drilling 58 efforts. grading w/ white fine sand; some clay cementation 74 SPT 15 7 50/3" >50 0.3

4:19 PM

1/15/2009

SHEET 3 OF 3 CLIENT **PROJECT** PROJECT NO. International Power America, Inc. Coleto Creek Unit Two 149116 PROJECT LOCATION **COORDINATES GROUND ELEVATION (DATUM)** TOTAL DEPTH Victoria, Texas N 327129.3' E 2570579.3° 133.0 ft (MSL) 80.0 (feet) SURFACE CONDITIONS COORDINATE SYSTEM DATE START DATE FINISHED Grassy, level, tan clayey sand State Plane 9/16/08 9/17/08 LOGGED BY CHECKED BY SOIL SAMPLING APPROVED BY SAMPLE RECOVERY 2ND 6 INCHES V Bhadriraju V Bhadriraju SAMPLE SAMPLE N VALUE SET 6 INCHE 3RD 6 INCHE ELEVATION (FEET) SAMPLE TYPE GRAPHIC LOG DEPTH (FEET) **ROCK CORING CLASSIFICATION OF MATERIALS** REMARKS RECOVERY
RAD
RECOVERY
PERCENT
RECOVERY RUN Based on driller's Silty SAND; white; very dense; moist; fine grained; comments & 72 poorly graded; some pockets of light brown clay; highly cuttings from cemented 62 rotary wash. 70 64 SPT 16 50/4" >50 0.2 68 66 66 68 grading w/ trace angular to subangular gravel; clay 64 SPT 17 50/3 >50 0.3 pockets grade to trace 70 62 72 60 No clay cuttings CLAY; dark tan; hard; moist; low plasticity; some sand 74 SPT 1.5 18 12 17 22 39 in drilling fluid @ 74.5' yellowish gray return. 58 76 56 78 54 SPT 19 13 17 22 39 1.5 80 Bottom of boring @ 80.0'. Water 52 level recorded @ 24.6' after 24 82 hours. Borina 50 backfilled w/ bentonite pallets 84 to 42.5' on 09/17/ 08. Piezometer 48 PZ-5 set from 86 30.0' to 40.0'. Boring backfilled 46 with cement bentonite grout to 88 ground surface. 44

4:19 PM

1/15/2009

SHEET 1 OF 3 CLIENT PROJECT NO. International Power America, Inc Coleto Creek Unit Two 149116 PROJECT LOCATION COORDINATES **GROUND ELEVATION (DATUM)** TOTAL DEPTH Victoria, Texas N 328659.71 E 2571578.7' 128.4 ft (MSL) 80.0 (feet) SURFACE CONDITIONS **COORDINATE SYSTEM DATE START** DATE FINISHED Level, loose, silty sand State 9/8/08 9/8/08 LOGGED BY SOIL SAMPLING CHECKED BY APPROVED BY SET 6 INCHES 2ND 6 INCHES SAMPLE RECOVERY V. Bhadriraju V Bhadriraju SAMPLE SAMPLE 6 INCHES N VALUE ELEVATION (FEET) SAMPLE TYPE GRAPHIC LOG DEPTH (FEET) **ROCK CORING CLASSIFICATION OF MATERIALS** REMARKS RUN RECOVERY PERCENT RECOVERY RECOVERY RUN CORE Rab ROD SAND; dark brown; loose; moist; fine grained; poorly 128 Boring advanced SPT 1 2 5 7 0.9 1 graded w/3-1/4" ID hollow stem Clayey SAND; light brown; medium dense; moist; fine 2 auger. SPT 126 grained; poorly graded performed w/auto SPT 2 5 5 11 hammer. 6 1.5 grading light gray; some black mottling & trace roots 124 grading w/trace chalk nodules; roots grade out SPT 3 6 4 9 15 1.5 6 122 grading w/frequent seams of chalk nodules 8 SPT 4 5 6 8 14 1.1 120 Clayey SAND; light gray; moist; fine to medium 10 118 grained; poorly graded; trace gravel CA 5 3 3 4 7 1.5 12 grading w/highly cemented calcareous sand 116 Silty SAND; grayish white; very dense; moist; fine grained; poorly graded 14 SPT 6 22 50/3 >50 0.7 114 16 112 \subseteq Water 18 grading orange; wet; fine to medium grained; trace 110 encountered calcareous sand nodules during drilling @ SPT 7 24 50 50/4 >50 0.9 17.6'. 20 Driller reports 108 softer drilling. Below 18.5' continued w/ 22 rotary wash 106 method using 4" drag bit & CLAY; light gray; very stiff; moist; high plasticity; some bentonite slurry 24 SPT 5 6 14 20 1.5 104 light brown clay pockets as drilling fluid. White silt & fine SAND; light gray; very dense; wet; fine to coarse sand in bottom of 26 grained; well graded; w/trace gravel 102 SPT-8 28 100 SPT 9 20 48 48 96 1.5

4:19 PM

SHEET 2 OF 3 CLIENT **PROJECT** PROJECT NO. International Power America, Inc Coleto Creek Unit Two 149116 PROJECT LOCATION COORDINATES **GROUND ELEVATION (DATUM) TOTAL DEPTH** Victoria, Texas N 328659.7' E 2571578.7' 128.4 ft (MSL) 80.0 (feet) SURFACE CONDITIONS **COORDINATE SYSTEM** DATE START DATE FINISHED Level, loose, silty sand State 9/8/08 9/8/08 SOIL SAMPLING LOGGED BY CHECKED BY APPROVED BY SAMPLE RECOVERY SET 6 INCHES 2ND 6 INCHES 3RD INCHES V. Bhadriraju SAMPLE V Bhadriraju VALUE ELEVATION (FEET) 6 SAMPLE TYPE GRAPHIC LOG DEPTH (FEET) **ROCK CORING CLASSIFICATION OF MATERIALS** REMARKS RQD RECOVERY RUN RUN LENGTH RUN RECOVERY PERCENT RECOVERY 30 grading grayish white; fine grained; poorly graded; w/ 98 trace clay & some grave! 96 grading fine to medium grained; clay & gravel grade out 34 SPT 10 33 50/4" >50 0.4 @ 34.0'-35.0' 94 boulder encountered. 36 Hard drilling. 92 Drilled through w/ 4" tricone driller bit. Driller 38 reported 90 limestone in grading w/occasional light brown clay pockets cuttings. SPT 11 9 24 40 64 1.4 40 Continued w/4" 88 paddle bit. 39.0'- 43.2' driller @ 40.5' white clayey silt & some chalk nodules Silty CLAY; grayish white; hard; moist; low plasticity; w/ reported clay like 42 some light gray fine sand pockets drilling. 86 SPT 12 13 39 50/4" >50 1.1 84 46 82 CA 13 30 45 50/5" >50 1.0 grading w/limestone nodules 48 SAND; light gray; wet; fine grained; poorly graded; 80 highly cemented SPT 14 36 50/5" >50 1.0 @ 47.2' grading light brown; fine to medium grained; cementation grades out 50 7R Sandy CLAY; grayish white; hard; dry; low plasticity 52 76 54 SPT 15 17 30 32 1.5 62 SAND; light brown; very dense; wet; fine to medium grained; poorly graded; some gravel & coarse sand sized chalk nodules; occasional light brown clay 56 pockets 58 70 16 50/4 >50 0.3

4:19 PM

1/15/2009

SHEET 3 OF 3 CLIENT PROJECT PROJECT NO. International Power America, Inc. Coleto Creek Unit Two 149116 PROJECT LOCATION COORDINATES **GROUND ELEVATION (DATUM) TOTAL DEPTH** Victoria, Texas N 328659.7' E 2571578.7 128.4 ft (MSL) 80.0 (feet) SURFACE CONDITIONS **COORDINATE SYSTEM** DATE START **DATE FINISHED** Level, loose, silty sand State 9/8/08 9/8/08 LOGGED BY SOIL SAMPLING CHECKED BY APPROVED BY SAMPLE RECOVERY 2ND 6 INCHES 3RD 6 INCHES V. Bhadriraju SET INCHES SAMPLE V Bhadriraju N VALUE SAMPLE ELEVATION (FEET) SAMPLE TYPE **GRAPHIC LOG** DEPTH (FEET) **ROCK CORING CLASSIFICATION OF MATERIALS** REMARKS PERCENT RECOVERY RUN RECOVERY RQD RECOVERY RUN NUMBER RUN LENGTH Rab 60 68 @ 60.0' white chalk layer Clay cuttings CLAY; yellowish gray; hard; moist; high plasticity from rotary wash 62 66 64 SPT 17 11 20 25 45 1.5 64 66 62 68 60 grading w/frequent partings of grayish white fine sand SPT 18 18 25 25 50 1.5 w/gravel sized chalk nodules 70 58 72 56 @ 73.5'-74.0' light brown 74 SPT 19 14 27 27 54 1.5 54 fine sand partings grade to occasional 52 78 50 SPT 20 18 18 29 47 1.5 SAND; grayish white; dense; moist; fine grained; poorly 80 graded; trace clay Bottom of boring 48 @ 80.0'. Water level recorded @ 82 16.3' after 24 46 hours. Boring backfilled w/ bentonite pallets 84 to 42.5' on 09/09/ 44 08. Piezometer PZ-21 set from 30.0' to 40.0'. 86 42 Boring backfilled with cement bentonite grout to 88 ground surface. 40

STATE OF TEXAS WELL COMPLETION REPORTS

STATE OF TEXAS WELL REPORT for Tracking #423117

Owner: IPA Operations, Inc. Owner Well #: W-9 Renamed MW-9

Address: Coleto Creek Power LP Grid #: 79-23-2

PO Box 8

Fannin, TX 77960 Latitude: 28° 43' 27" N

Well Location: Coletto Creek Power Plant Longitude:

Fannin, TX 77960

· ·

097° 12' 19" W

Well County: Goliad Elevation: No Data

Type of Work: New Well Proposed Use: Monitor

Drilling Start Date: 9/16/2015 Drilling End Date: 9/17/2015

Diameter (in.) Top Depth (ft.) Bottom Depth (ft.)

Borehole: 6 0 60

Drilling Method: Hollow Stem Auger

Borehole Completion: Filter Packed

Top Depth (ft.) Bottom Depth (ft.) Filter Material Size

Filter Pack Intervals: 38 60 Sand 16/30

Annular Seal Data:

Top Depth (ft.)

Bottom Depth (ft.)

Description (number of sacks & material)

Cement 1 Bags/Sacks

2 38 Bentonite 15 Bags/Sacks

Seal Method: **Hand Mixed**Distance to Property Line (ft.): **No Data**

Sealed By: **Driller** Distance to Septic Field or other

concentrated contamination (ft.): No Data

Distance to Septic Tank (ft.): No Data

Method of Verification: No Data

Surface Completion: Surface Slab Installed Surface Completion by Driller

Water Level: 25.2 ft. below land surface on 2015-09-18 Measurement Method: water level meter

Packers: No Data

Type of Pump: No Data

Well Tests: No Test Data Specified

Water Quality:

Strata Depth (ft.)	Water Type
No Data	No Data

Chemical Analysis Made: No

Did the driller knowingly penetrate any strata which contained injurious constituents?: **No**

Certification Data: The driller certified that the driller drilled this well (or the well was drilled under the

driller's direct supervision) and that each and all of the statements herein are true and correct. The driller understood that failure to complete the required items will result in

the report(s) being returned for completion and resubmittal.

Company Information: EnviroCore, Inc.

7525 Idle Hour Dr.

Corpus Christi, TX 78414

Driller Name: Craig Schena License Number: 4694

Comments: No Data

Report Amended on 5/26/2016 by Request #17930

Lithology: DESCRIPTION & COLOR OF FORMATION MATERIAL

Top (ft.)	Bottom (ft.)	Description
0	2	fill material
2	5.5	silty clay/clayey sand;brownish gray to white
5.5	10	silty clay; dark gray
10	20.5	caliche and silty clay;light gray to white
20.5	22	silty sand;brownish gray
22	44	sand; light orangish brown
44	47	silty sand; light gray
47	54	silty clay/clayey sand; light gray
54	60	silty, clayey sand; gray

Casing: BLANK PIPE & WELL SCREEN DATA

Dla (in.)	Туре	Material	Sch./Gage	Top (ft.)	Bottom (ft.)
2	Riser	New Plastic (PVC)	40	-3	40
2	Screen	New Plastic (PVC)	10	40	60

IMPORTANT NOTICE FOR PERSONS HAVING WELLS DRILLED CONCERNING CONFIDENTIALITY

TEX. OCC. CODE Title 12, Chapter 1901.251, authorizes the owner (owner or the person for whom the well was drilled) to keep information in Well Reports confidential. The Department shall hold the contents of the well log confidential and not a matter of public record if it receives, by certified mail, a written request to do so from the owner.

Please include the report's Tracking Number on your written request.

Texas Department of Licensing and Regulation P.O. Box 12157 Austin, TX 78711 (512) 463-7880 **STATE OF TEXAS WELL REPORT for Tracking #423118**

Owner: **IPA** Operations, Inc. Owner Well #: W-10 Renamed MW-10

Address:

Coleto Creek Power LP

Grid #:

PO Box 8

Latitude:

28° 43' 27" N

Well Location:

Fannin, TX 77960

Longitude:

097° 12' 19" W

Fannin, TX 77960

Coletto Creek Power Plant

Well County:

Elevation:

No Data

79-23-2

Goliad

Proposed Use:

Monitor

Drilling Start Date: 9/15/2015

Type of Work: New Well

Drilling End Date: 9/15/2015

Borehole:

Diameter (in.)	Top Depth (ft.)	Bottom Depth (ft.)
6	0	60

Drilling Method:

Hollow Stem Auger

Borehole Completion:

Filter Packed

Filter Pack Intervals:

Top Depth (ft.)	Bottom Depth (ft.)	Filter Material	Size
38	60	Sand	16/30

Annular Seal Data:

No Data

Seal Method: Hand Mixed

Distance to Property Line (ft.): No Data

Sealed By: Driller

Distance to Septic Field or other

concentrated contamination (ft.): No Data

Distance to Septic Tank (ft.): No Data

Method of Verification: No Data

Surface Completion:

Surface Slab Installed

Surface Completion by Driller

Water Level:

24.8 ft. below land surface on 2015-09-18 Measurement Method: water level meter

Packers:

No Data

Type of Pump:

No Data

Well Tests:

No Test Data Specified

Water Quality:

Strata Depth (ft.)	Water Type
No Data	No Data

Chemical Analysis Made: No

Did the driller knowingly penetrate any strata which contained injurious constituents?: **No**

Certification Data: The driller certified that the driller drilled this well (or the well was drilled under the

driller's direct supervision) and that each and all of the statements herein are true and correct. The driller understood that failure to complete the required items will result in

the report(s) being returned for completion and resubmittal.

Company Information: EnviroCore, Inc.

7525 Idle Hour Dr.

Corpus Christi, TX 78414

Driller Name: Craig Schena License Number: 4694

Comments: No Data

Report Amended on 5/26/2016 by Request #17931

Lithology: DESCRIPTION & COLOR OF FORMATION MATERIAL

Top (ft.)	Bottom (ft.)	Description
0	2	fill material
2	8	silty sandy clay; orangish brown
8	11	silty clay/clayey sand; light gray
11	19	silty sand; light gray
19	30	sand; light gray
30	32	silty clay/clayey sand; light gray
32	34	clayey sand; brownish gray
34	36	silty sand; light gray
36	52	silty, clayey sand; light gray
52	60	silty sand; light gray

Casing: BLANK PIPE & WELL SCREEN DATA

Dla (in.)	Туре	Material	Sch./Gage	Top (ft.)	Bottom (ft.)
2	Riser	New Plastic (PVC)	40	-3	40
2	Screen	New Plastic (PVC)	10	40	60

IMPORTANT NOTICE FOR PERSONS HAVING WELLS DRILLED CONCERNING CONFIDENTIALITY

TEX. OCC. CODE Title 12, Chapter 1901.251, authorizes the owner (owner or the person for whom the well was drilled) to keep information in Well Reports confidential. The Department shall hold the contents of the well log confidential and not a matter of public record if it receives, by certified mail, a written request to do so from the owner.

Please include the report's Tracking Number on your written request.

Texas Department of Licensing and Regulation P.O. Box 12157 Austin, TX 78711 (512) 463-7880

STATE OF TEXAS WELL REPORT for Tracking #462686

Owner: Dynegy Inc. Owner Well #: MW-11

Address: Coleto Creek Power Station Grid #: 79-23-2

PO Box 8

Fannin, TX 77960 Latitude: 28° 43' 37.02" N

Well Location: Coleto Creek Power Station Longitude: 097° 12' 18.36" W

Fannin, TX

Elevation: No Data

Well County: Goliad

Type of Work: New Well Proposed Use: Monitor

Drilling Start Date: 4/25/2017 Drilling End Date: 4/25/2017

 Diameter (in.)
 Top Depth (ft.)
 Bottom Depth (ft.)

 Borehole:
 6
 0
 49

Drilling Method: Hollow Stem Auger

Borehole Completion: Filter Packed

Top Depth (ft.) Bottom Depth (ft.) Filter Material Size

Filter Pack Intervals: 27 49 Sand 16/30

Annular Seal Data:

Top Depth (ft.)

Bottom Depth (ft.)

Description (number of sacks & material)

Cement 1 Bags/Sacks

1 27 Bentonite 13 Bags/Sacks

Seal Method: **Hand Mixed** Distance to Property Line (ft.): **No Data**

Sealed By: **Driller**Distance to Septic Field or other

concentrated contamination (ft.): No Data

Distance to Septic Tank (ft.): No Data

Method of Verification: No Data

Surface Completion: Surface Slab Installed Surface Completion by Driller

Water Level: No Data

Packers: No Data

Type of Pump: No Data

Well Tests: No Test Data Specified

Water Quality:

Strata Depth (ft.)	Water Type
No Data	No Data

Chemical Analysis Made: No

Did the driller knowingly penetrate any strata which

contained injurious constituents?: No

The driller did certify that while drilling, deepening or otherwise altering the above described well, injurious water or constituents was encountered and the landowner or person having the well drilled was informed that such well must be completed or plugged in such a manner as to avoid injury or pollution.

Certification Data:

The driller certified that the driller drilled this well (or the well was drilled under the driller's direct supervision) and that each and all of the statements herein are true and correct. The driller understood that failure to complete the required items will result in the report(s) being returned for completion and resubmittal.

Company Information: EnviroCore, Inc.

7525 Idle Hour Dr.

Corpus Christi, TX 78414

Driller Name: Craig Schena License Number: 4694

Comments: No Data

Lithology: DESCRIPTION & COLOR OF FORMATION MATERIAL

Top (ft.)	Bottom (ft.)	Description
0	1	0-1.0 - Silty CLAY
1	6.5	Predominately Caliche and Silty Clay
6.5	13.8	Silty Clayey Sand
13.8	28.5	Sand with abundant gravel
28.5	38	Silty Clayey Sand
38	40	Silty Clay/Clayey Sand
40	46	Silty Clayey Sand
46	49	Silty Clay/Clayey Sand

Casing: BLANK PIPE & WELL SCREEN DATA


Dla (in.)	Туре	Type Material Sch./Gage		Top (ft.)	Bottom (ft.)
2	Riser	New Plastic (PVC)	40	-3	29
2	Screen	New Plastic (PVC)	40 10	29	49

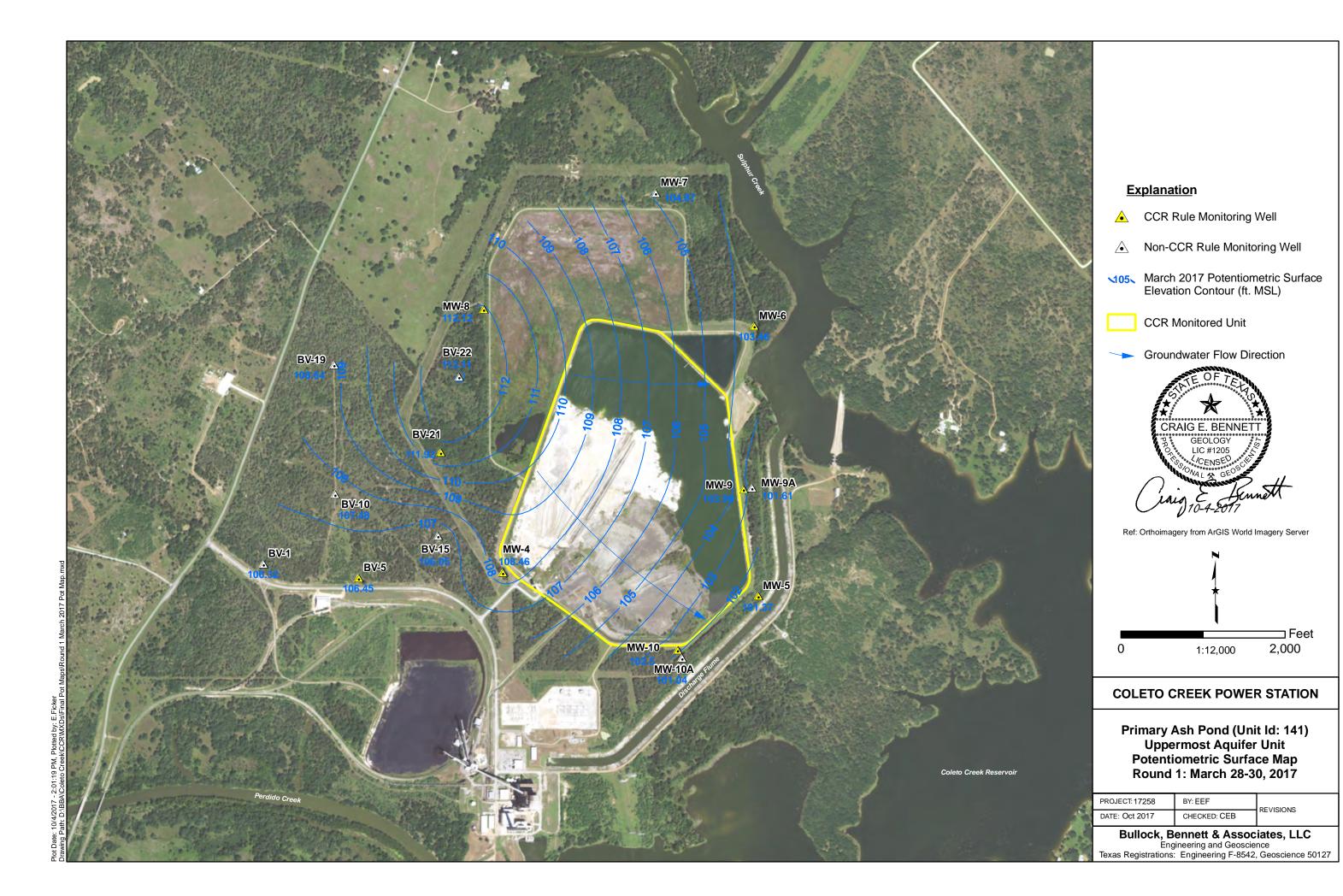
IMPORTANT NOTICE FOR PERSONS HAVING WELLS DRILLED CONCERNING CONFIDENTIALITY

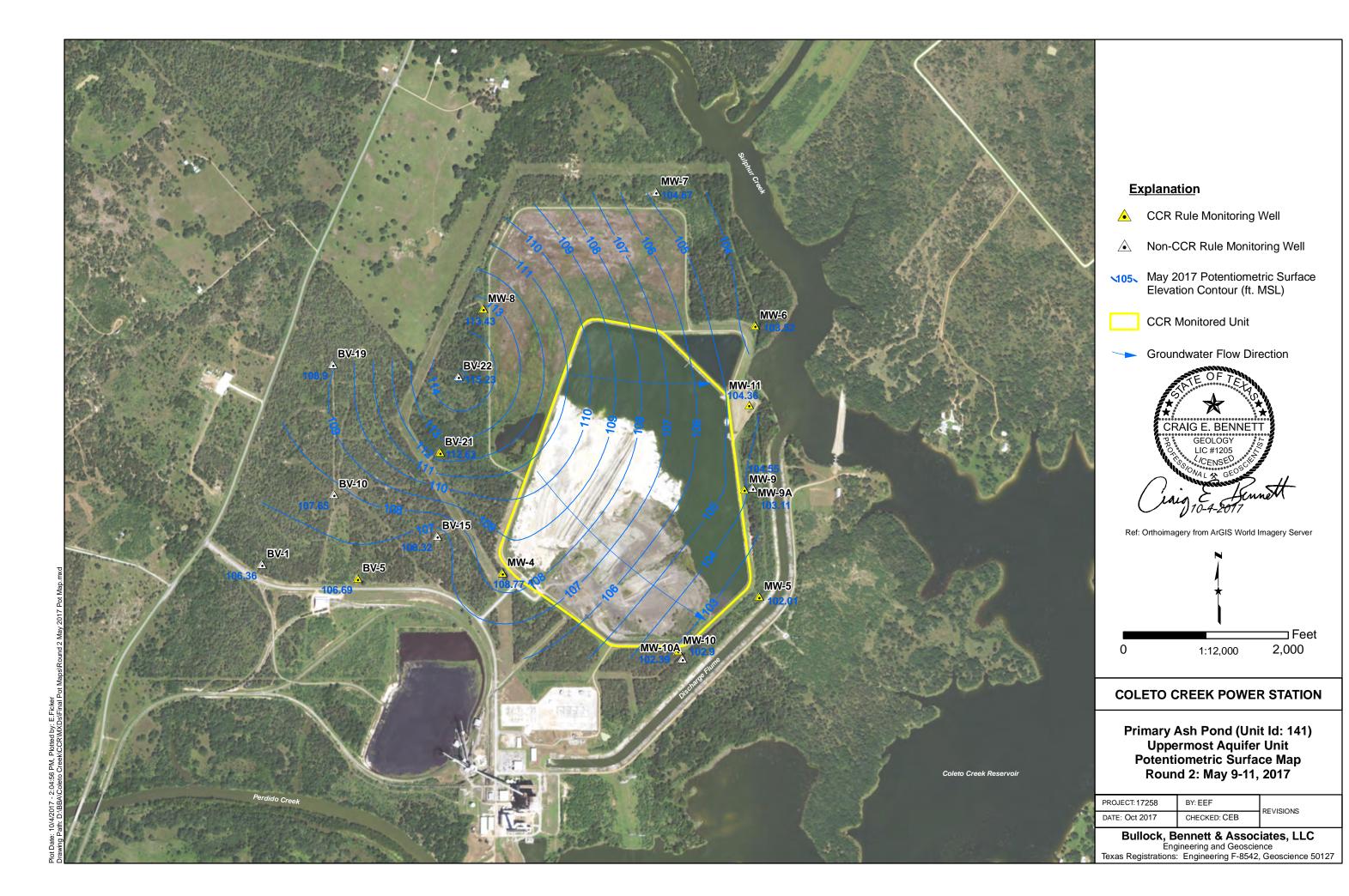
TEX. OCC. CODE Title 12, Chapter 1901.251, authorizes the owner (owner or the person for whom the well was drilled) to keep information in Well Reports confidential. The Department shall hold the contents of the well log confidential and not a matter of public record if it receives, by certified mail, a written request to do so from the owner.

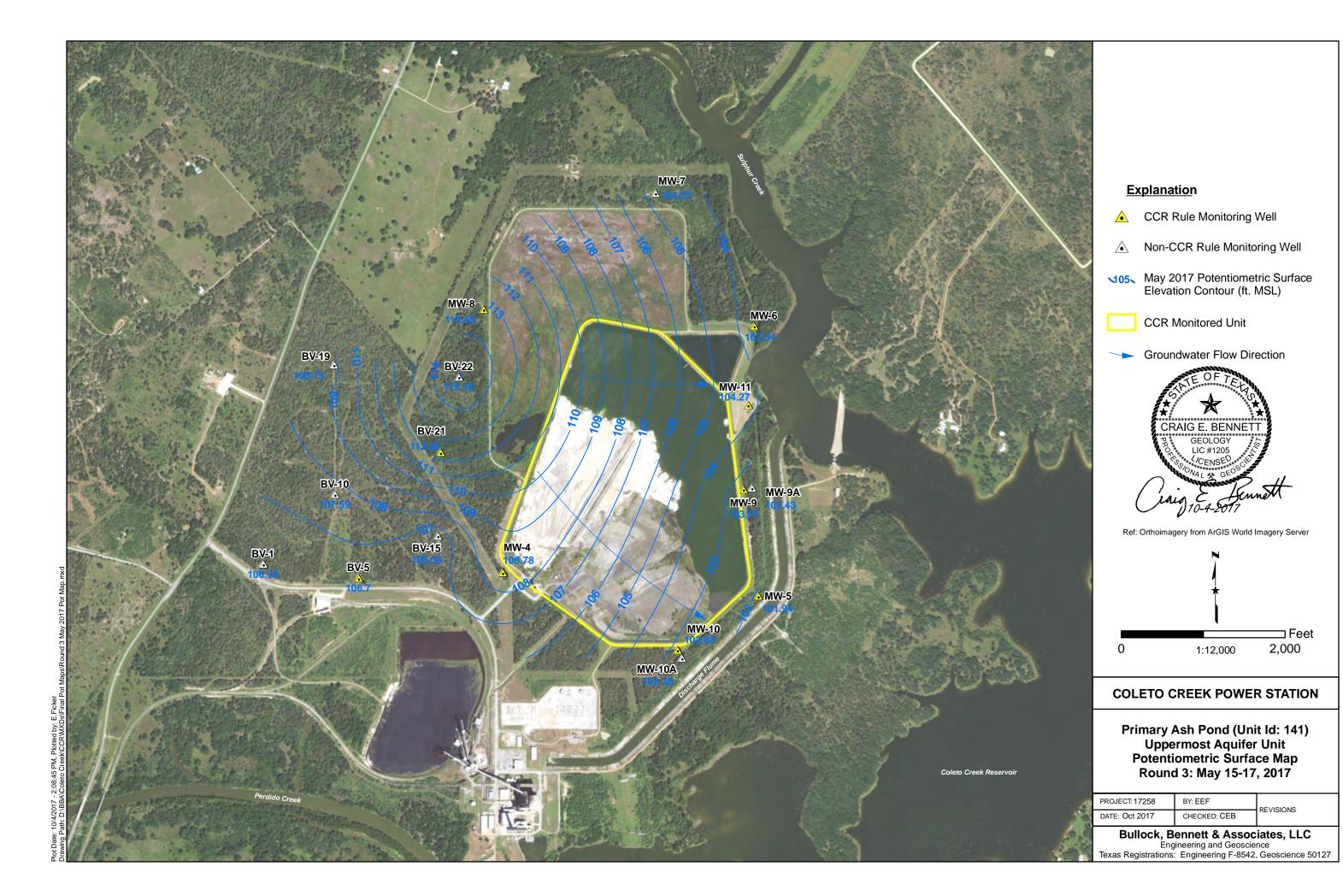
Please include the report's Tracking Number on your written request.

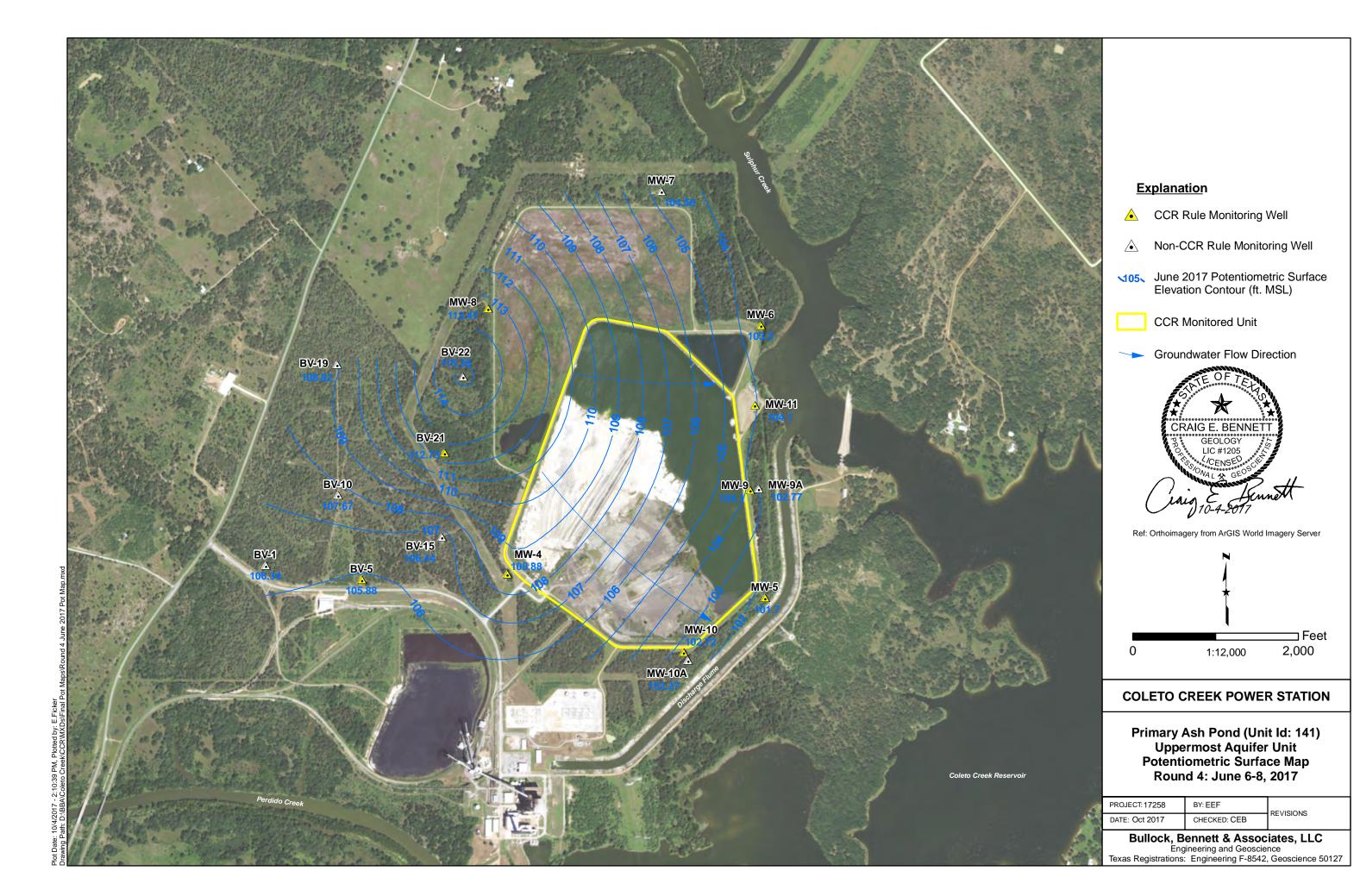
Texas Department of Licensing and Regulation P.O. Box 12157 Austin, TX 78711 (512) 334-5540

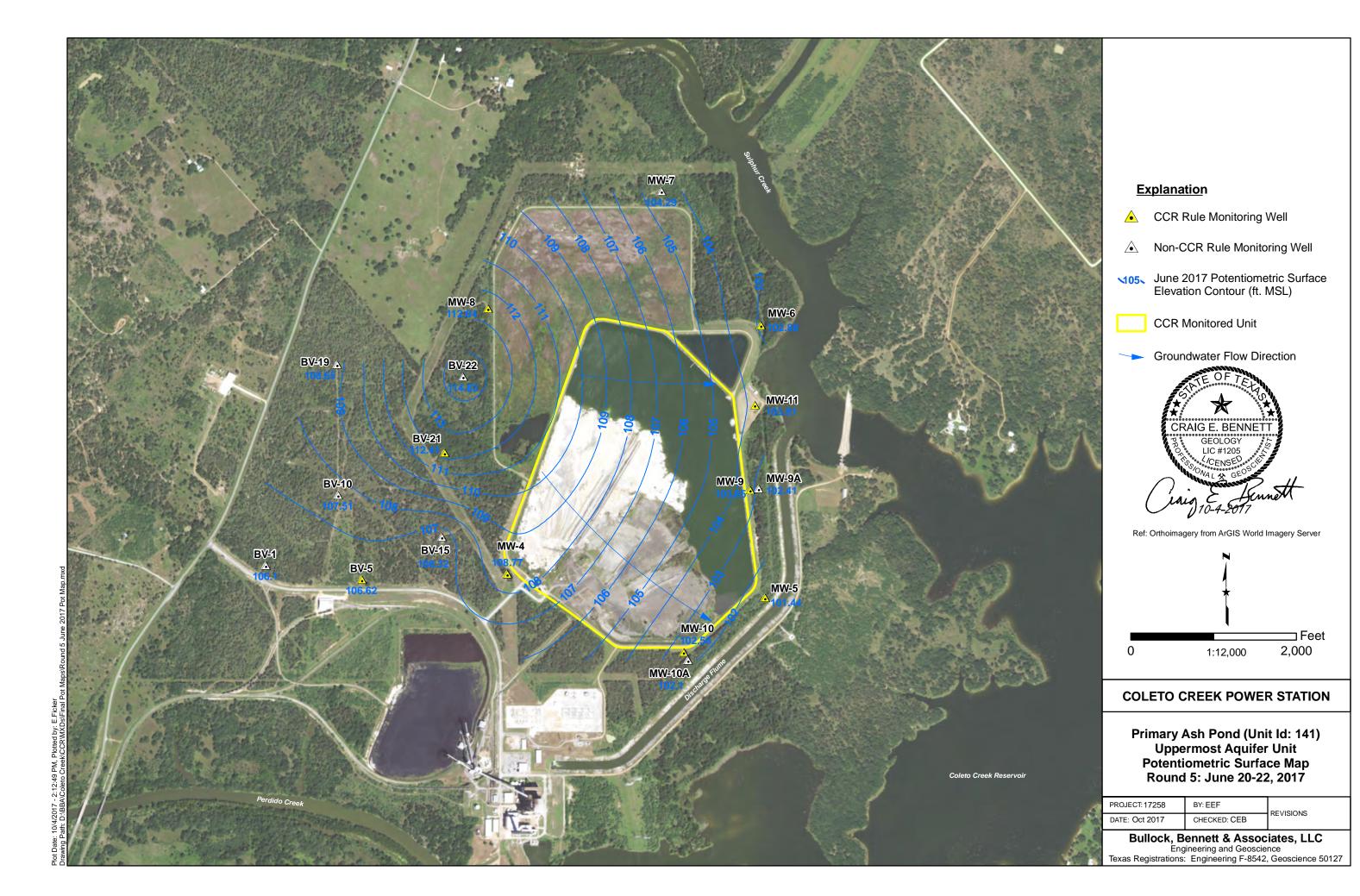
WELL DEVELOPMENT RECORD				D		ALL	PA	GE1 of1
Project Number	Project Number: 15215 Project Name: Coleto				reek Power, LP			Date: 9, 22. 2-15
ell Location (well ID, etc): W- °	R ena	med		Starting Wa	iter Level (ft.	BMP):
Developed by:	C. Winkle	er/E. FLC	MW-	9				3.15
Measuring Point (MP) of Well: TOC/PVC								BGL): 25.15
Screened Interval (ft. BGL): 40-60								ه. مع
Filter Pack Interval (ft. BGL): 3								7,5
						Casing Volu		
QUALITY AS	SSURAN	CE						
METHODS (d	escribe):	Submersibl	e pump and/or	surge block of	cleaned between w	ells		ar Line
Cleaning Equ	ipment:	Deionized	water triple rin	se				
Purging:	Array	Water qua	lity stabilization	n	_Surge Equipment	: Submersible	pump	
Disposal of D	ischarged W	Vater:	Temporarily s		in 55-gallon drums	0 0.00		
INSTRUMEN	TS (Indic	ate make,	model, l.d.)	1946.1				
Water Level:	Water line	300	TOTAL CONTRACTOR OF THE PARTY O		_Thermometer:	Horiba U50	*	
pH Meter:	Horiba U5	0			Field Calibration:	Horiba U50 A	Autocal	
Conductivity N	leter:	Horiba U50			Field Calibration:	Horiba U50 A	Autocal	
Other:								
DEVELOP		EASURE!	MENTS	Water Quali				
Time 102 G	Cum. Vol. (gal. / L)	Purge Rate (gal. / L pm)	Temp. (°C)	pH	Spec. Cond. (μΣ/cm)	Color	Turbidity & Sediment	Remarks
1232	٥	1.25	23,49	7.30	0.663	TON!	7-1-1-1	20.0.92
1.34	5	1)	23,40	7.26	0,657	71	1000	D. 5. 0, 65
1038	10	N	23.40	7.26	0.652	اد	1000	4.0.0,54
1045	15	一0月5	2346	7,25	0.650	CHERRAS	1,000	WL= 29.80
1051	05	70.85	23.40	7-25	0.659	1)	12000	D.O. D. 78
1059	25	20.25	23.56	7.25	0,65.3	か	6000	WL= 29.80
1108	32	10,55	23,78	7.25	0.698	li	1077	Du. 0.42
1130	40	20.45	24.10	7.28	0,652	rl	1000	22.0.40
1142	50	70,85	23.39	7.29	0.656	1,	Leas	D.O. 0.35
1156	60	NO.70	23.54	7.24	0.659	t r	9000	1).0. 0.31
1206	70	11,00	23-49	7.21	0,662.	NUETLAL	727	0.0.0.30
12/2	75	0.85	23.47	7.21	0.663	pt	996	D.Q D. 29
12/6						Dr. 0.28		
	otal Discharge (gallons): 85							
Observations/Cor		0	Var. 2. 12. 12. 12. 12. 12. 12. 12. 12. 12.					
PURGES W						Bulloc		Associates, LLC
	CARAGE FEDURATE BUR TO BATTERY POWER				165 N. Lampasas St. Bertram, TX 78605			
DRAW ON 62N. SWICKER TO VEHICLES.						(512) 355-9		Fax (512) 355-9197

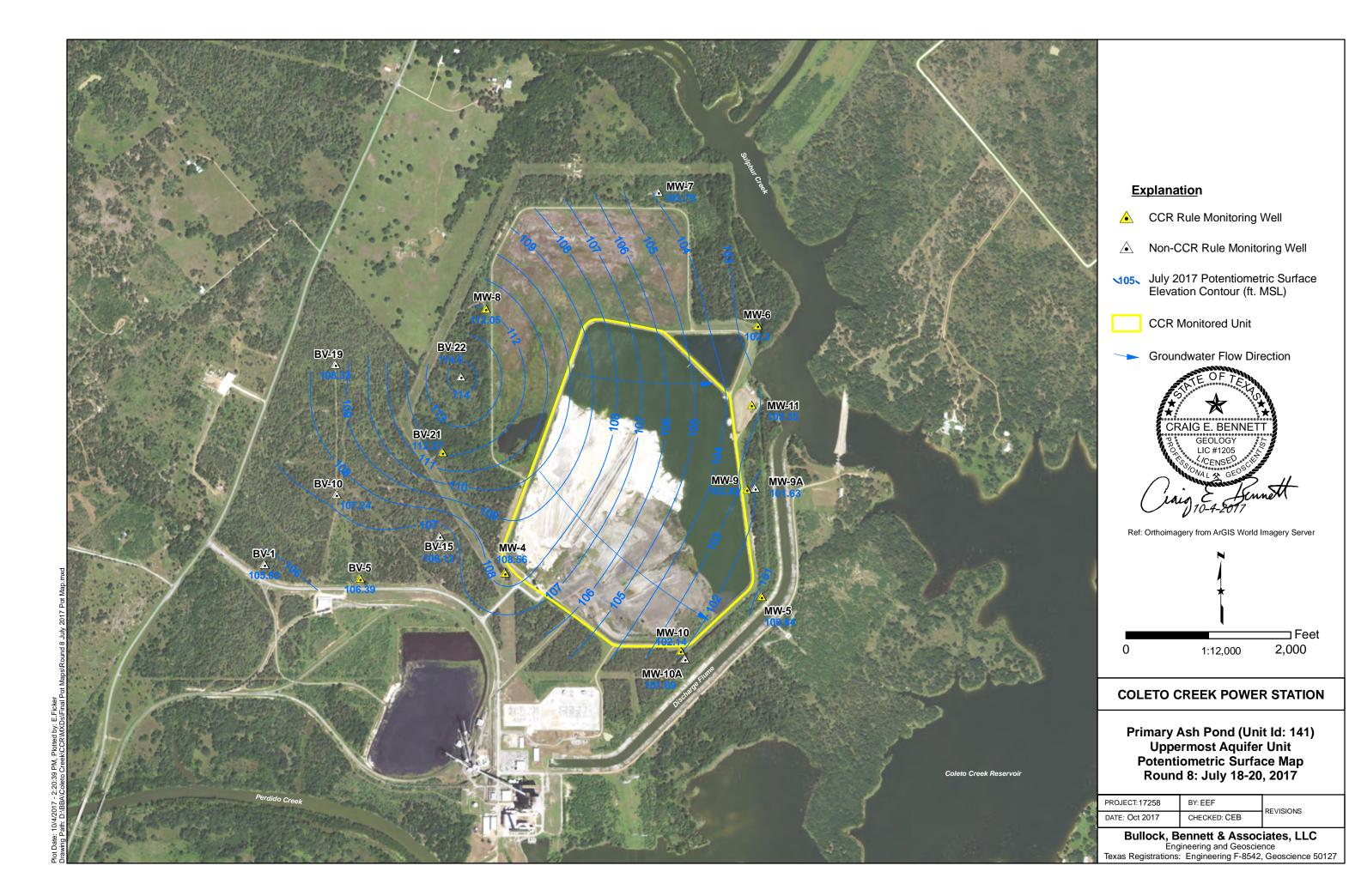

WELL DI	EVELO	PMENT	RECORL)			PAG	GE1 of1
Project Numbe	r:	15215	Project Nam	e: Coleto Cro	eek Power, LP	9535 5-44563 (7-7-		Date: 9, 22, 15
ell Location (well ID, etc.): W/-	Rena			Starting Water	er Level (ft.	BMP): 17.73
Developed by:	C. Winkle	/E.fic	KEN MW-1	U		Casing Stick		- 0
Measuring Poir	nt (MP) of W	ell:	TOC/PVC		and the same of th	Starting Water	er Level (ft. l	BGL): 24,73
Screened Inten	val (ft. BGL):	245	-60'	on Career version in the Mass	31 VVII 3 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -	Total Depth (ft. BGL): _	7620
Filter Pack Inter	rval (ft. BGL): 730 -	60		Harris (ASS)	Casing Diam	eter (In ID):_	2, 5
						Casing Volum	ne (gal.):	- 5.35
QUALITY AS	SSURANC	E						and the second s
METHODS (de	escribe):	Submersible	e pump and/or	surge block c	leaned between we	ells		
Cleaning Equi	ipment:	Deionized	water triple rin	se				
Purging:		Water qua	lity stabilization	1	Surge Equipment	Submersible	oump	
Disposal of Di	scharged W	ater:	Temporarily s	stored on-site	in 55-gallon drums	until authorized	d disposal	
INSTRUMEN	TS (Indic	ate make, i	model, l.d.)					
Water Level:	Water line	300			Thermometer:	Horiba U50		
pH Meter:	Horiba U50)			Field Calibration:	Horiba U50 A	utocal	
Conductivity N	leter:	Horiba U50			Field Calibration:	Horiba U50 A	utocal	
Other:								i P
DEVELOPI	DELICITION THE STATE OF THE STATE OF	EASURE	MENTS	Water Overlin				
Time	Cum. Vol. (gal. / L)	Purge Rate (gal. / L pm)	Temp. (°C)	Water Qualit pH	Spec. Cond. (μΣ/cm)	Appear Color	Turbidity & Sediment	Remarks
0828	-			_		TAN		
0832	5	1.75	2448	8,83	1.27	Erpusy	1599	D. 2, 6, 34
0836	10	11	24.54	6.79	1,26	17	1000	17.3. 5.14
0840	(5	1	24.55	6.77	1.27	11	دودا	Da 3.93
2899	7 =	11	29,56	6.76	1.37	Not rose	1000	WL=41.57
0849	25	19	24,57	4.76	1.32	14	5-11	WL 41.51
0853	30	10	24.53	6.77	1.30	l v	419	" 42473
0857	35	11	29,57	6.75	1.33	t,	348	0.0.62
0961	40	11	29.55	6.76	1.32	10	278	0.3. 0.60
1905	45	11	24.55	6.76	1.32	ч	253	0.0.62
0909	50	l e	24.55	6.76	1.32	11	202	D. 3.60
0913	55	17	24.55	6.76	1.32	1a	216	WL: 42.30
0918	60	37	24.52	6.73	1.34	v .	223	D-3 = 2.58
િ કોંકેcharge (gallons): 6	5 4	24.51	6.75	1.34	12	181	D.J. = D.62
Observations/Co	mments: 🕹	UPCIN.	6 10 W				100 200	•
Houme)	,	METERS) £ 4		Bullock		& Associates, LLC
		en volu	ME.				165 N. Lam Bertram, T	
KLOWERS P	was a	FRET	-			(512) 355-9		Fax (512) 355-9197


	WELL	DEVE	LOPME	NTR	ECO	RD		PAG	E	of/_			
~	Project N	umber: (7252	Project	Name:	Coleto	Creek Voi	we:	Date:	4.26.17			
	Well Loca	ation (well IE), etc.):	MW	il .		Starting Water	er Level (ft. B	MP):	13.93]		
	Develope	ed by:	EFF				Casing Stick	up (ft.):	2.7				
	Measurin	g Point (MP) of Well:	To	<u></u>		Starting Wate	er Level (ft. B		11.23			
	Screened	Interval (ft.	BGL):	29	-49	}	Total Depth (ft. B GC):	51	1.83			
	Filter Pac	k Interval (fl	:. BGL):	27 -	-49		Casing Diam	eter (In ID):_	2	4			
							Casing Volun	ne (gal.):	6,1	/			
	QUALIT	Y ASSUR	RANCE										
	METHO	DS (describ	e):					s	٨.	1+1:	14		
	Cleanin	g Equipmen	it: Alcon	or So	lation	tise 10	entrial	e rinse	+ pu	-p 4 tobic	colle		
	Purging	Water	walty	Stab	1/2 this	e Equipment:	Sign	resible	Purp	יוע			
	Disposa	al of Dischar	ged Water:	Temp	ora-il	& Stores	1/2 5	r-39/16	2	frem			
	INSTRU	JMENTS (Indicate m	ake, n	nodel, l	.d.)							
	Water Level: Solinit 300 Thermometer: Hariba USO												
	pH Meter: Hariba USO Field Calibration: Hariba USO Autocal												
	Conduc	tivity Meter:	Horiba	وں	50	Field Calibration	on: Itari	ba US	o A	utocal			
	Other:												
	DEVE		IT MEAS	UREN				1					
(Time	Cum. Vol.	ow Purge Rate	Temp.	Water C	Spec. Cond.	Appea Color	Turbidity &		Remarks WL			
	1220	(gal. / L)	(gal. / L pm)	24.11	7.56	(μΣ/cm)	white	Sediment 7/000	46		1		
	1225	10	1.7	23.76			White	"	-16	17.35	-		
	1228	15	1.7	~	_		White	et	-20		1		
	1231	20	1.7	23.31	7.65	0. 716	Uhite	`'	-33	17.8	-		
	1234	25	1.7		7.45	0.719	Cloudy	975	-26		1		
	1237	36		23.16		0.721	Clear	642	-5		1		
	1247	35	0.5	24.33			Checr	704	44	/sw	coper		
	1317	40	1	24.04	555		Clos	358	4				
	1322	45	1	23.72	7.60	0.735	Ch	319	6	10.0	5		
	1327	- 50	1	23.51	7.47	6.735	Cher	206	-7]		
	1332	55	1	23.56	7.35	0.733	Clear	187	-/8		1		
	1337	60	ſ	23,46	7.39	0.732	Clear	176	-1	18	70		
	1342	65	1	23.42	7.28	0.733	Clear	132	-11]		
	Total Disc	charge (gallo	ons): 6	5									
	Observat	ions/Comme	ents:										
	Po	rjed	ten o	vel/		Bullock, Bennett, & Associates, LLC							
1	US	Comes				165 N. Lampasas St. Bertram, TX 78605							
							(512) 355) 12) 355-9197			
						ć	.3/						


۲.


	WELL	DEVE	LOPME	NTF	RECO	RD			PAGE			
Т	Also resolvents		7258		Name:	Coleto				Date: 3,21,17		
-		ation (well ID		BV-	-21		Starting	Wate	er Level (ft. BN	1P): <u>18,88 </u>		
1	Develope	d by:					Casing	Sticku	ıp (ft.):	~3		
г		g Point (MP		Tue			7		er Level (ft. BC			
1	Screened	Interval (ft.	BGL):	30-4			Total De	epth (ft. BGC):			
F	Filter Pac	k Interval (ft	. BGL):	30-	40		Casing	Diame	eter (In ID):	2		
-							Casing	Volun	ne (gal.):	3.5		
1	QUALIT	Y ASSUR	RANCE									
	METHO	DS (describ	e):	,		,		ř				
	Cleanin	g Equipmen	t: A/Coas	Soli	tion 1	isse then	Triple	Ti	re at po	-p stobing will		
1	Purging	Water	guality	Stal	viliz gur	ge Equipment:		.60	ressible	pump with		
L	Disposa	l of Dischar	ged Water:	Ten	polar	ik Stor	od in	کے۔	5-sella	drun		
1			Indicate m						1			
	Water L	.evel:	Solinst	- 301	b	Thermometer	:	14	priba U	30		
	Water Level: Shirt 300 Thermometer: Horiba USO pH Meter: Horiba USO Field Calibration: Horiba USO Autocal											
1						Field Calibrati	300-0-00			150 Autocal		
	Other:	-0.000 - 0.0000.0400					SE (1971)					
		OPMEN	IT MEAS	UREN	IENTS	3						
	Time		ow Purge Rate	Temp.	Water 0			Appea	rance Turbidity &	Remarks		
	Time	(gal. / L)	(gal. / L pm)	(°C)	pН	Spec. Cond. (μΣ/cm)	Colo		Sediment	Remarks		
	1400	5		24.42	7.12	0.707	White	Clouk	71000			
	1405	10	1	23.58	6.88	0.719	in	"	71080	WL = 19.50		
	1410	15	1	23.79	6.78	0726		"	71400	WV=1950		
ſ	1425	20	0,5	24.21	6.90	0.735	C	"	71000	WL= 19.10		
	1430	25	1	24.7	26.99	0.666		.,	7/00	1		
	1440	30	05	24.12	6.99	0.721	rı	le	7/000			
	1450	35	0.5	23.99	7.04	0.723	te	4	429			
T	1500	40	0.5	24.19	7.12	0.725	11	"	792			
1	10			-17								
t												
1												
ŀ					-							
+												
1	T-4-1 D:	.h /"	LIA									
- 1		charge (gallo										
. 1	Observati	ons/Comme			11	T						
}	1.1	Horge		WE		Bullock, Bennett, & Associates, LLC 165 N. Lampasas St.						
1		10me				Bertram, TX 78605						
(512) 355-9198 Fax (512) 355-9197												





CCR MONITORING WELL

(113.02)

GROUNDWATER POTENTIOMETRIC SURFACE (FT MSL)
GROUNDWATER POTENTIOMETRIC SURFACE CONTOUR
(C.I. = 10 FT)

→

INFERRED DIRECTION OF GROUNDWATER FLOW

CLIENT LUMINANT

PROJECT

COLETO CREEK POWER STATION FANNIN, TEXAS

TITLE

PRIMARY ASH POND POTENTIOMETRIC SURFACE MAP - OCTOBER 2, 2019

CONSULTANT

YYYY-MM-DD	2020-03
DESIGNED	AJD
PREPARED	TNB
REVIEWED	WFV
APPROVED	WFV

PROJECT NO. REV. FIGURE 19122449 ---- 1

Datashiga

REFERENCE(S)
BASE MAP TAKEN FROM GOOGLE EARTH, IMAGERY DATED 1/22/16.

ATTACHMENT 5 – TABLES SUMMARIZING C	CONSTITUENT CONCENTRATIONS AT EACH MONITORING WELL

APPENDIX III ANALYTICAL RESULTS COLETO CREEK PRIMARY ASH POND

Sample	Date	В	Ca	CI	FI	field pH	SO₄	TDS
Location	Sampled		- Ou	O1		noid pri	334	100
Prediction Limit:		1.26	143	118	0.61	6.51 7.33	148	966
Upgradient Wells								
BV-5	03/29/17	1.15	90.5	118	0.54	7.01	147	860
DV-3	05/11/17	1.03	81.6	106	0.57	6.89	148	862
	05/16/17	1.17	99	107	0.55	6.9	145	832
	06/07/17	1.11	88.8	109	0.56	6.64	147	810
	06/20/17	1.02	90.7	106	0.58	6.54	145	716
	06/27/17	1.14	100	114	0.55	6.76	144	743
	07/12/17	1.07	96.8	112	0.56	6.88	140	430
	07/18/17	1.17	143	117	0.56	6.68	142	817
	11/07/17	1.10	94.2	109	0.62	6.96	136	850
	06/19/18	1.18	56.4	112	0.97		147	775
	09/18/18	1.27	86.2	145	0.667	6.53	146	904
	06/05/19	1.26	82.9 72.2	123 141	0.769	6.89 7.11	146 145	828
	10/03/19 06/09/20	1.31 1.35	90.4	171	0.753 0.498	6.97	159	806 951
	03/28/17	0.651	6.89	36	0.496	7.09	69	490
BV-21	05/09/17	0.687	65.2	38	0.61	7.09	55	410
	05/17/17	0.709	74.3	39	0.58	7.05	53	454
	06/06/17	0.657	69	40	0.59	7.11	49	452
	06/20/17	0.642	77	40	0.61	6.7	45	356
	06/27/17	0.727	84.9	40	0.6	6.97	46	420
	07/10/17	0.674	90.6	39	0.58	7.22	45	427
	07/18/17	0.618	84.4	39	0.6	6.91	44	380
	11/07/17	0.515	73.6	42	0.64	7.12	46	423
	06/25/18	0.543	69.3	38.4	0.62		38.4	380
	09/18/18	0.624	72.1	33.3	0.479	6.64	36.4	416
	06/05/19	0.576	61.3	30.3	0.602	7.1	34.2	379
	10/03/19	0.534	63.4	23.9	0.588	6.82	33.2	342
	06/09/20	0.447	72.5	34.2	0.522	6.96	18.5	362
MW-8	03/28/17	1.2	7.76	79	0.49	7.06	76	626
WWW O	05/09/17	1.21	77.5	77	0.44	7.15	79	564
	05/15/17	1.16	81.2	76	0.44	7.01	79	558
	06/06/17	1.26	78.1	72	0.45	6.92	83.5	570
	06/20/17	1.24	86.5	67	0.43	6.7	89	476
	06/27/17	1.23	89.6	66	0.44	6.85	97	533
	07/10/17	1.24	92.6	63	0.44	7.13	97	533
	07/18/17	1.25	92.9	61	0.46	6.91	100	533
	11/07/17	1.21	78.8	61	0.49	7.08	100	540 565
	06/25/18	1.25	80.3	65.9	0.52	 6.70	95.2	565
	09/18/18	1.29	76.5	53.7	0.402	6.70	94.8	543 515
	06/05/19	1.11	65.2	51.4	0.497	7.10	79	515 541
	10/03/19	1.2	76.7	58.3	0.419	6.76	90.1	541
	06/09/20	1.33	73.1	46.4	0.392 J	7.04	72.3	511

APPENDIX III ANALYTICAL RESULTS COLETO CREEK PRIMARY ASH POND

Sample	Date	В	Ca	CI	FI	field pH	SO₄	TDS
Location	Sampled			<u> </u>			4	
Prediction Limit:		1.26	143	118	0.61	6.51 7.33	148	966
Downgradient Wells								
MW-4	03/28/17	0.287	9.14	102	0.61	9.81	157	794
10100-4	05/09/17	0.395	88.7	101	0.61	7.27	156	668
	05/17/17	0.251	92.1	101	0.6	6.93	157	702
	06/06/17	0.243	90.7	101	0.63	7.13	157	728
	06/20/17	0.254	99.3	101	0.62	6.71	157	626
	06/27/17	0.254	102	101	0.63	6.87	157	690
	07/10/17	0.271	111	101	0.62	7.16	158	670
	07/18/17	0.292	108	101	0.63	6.82	157	717
	11/07/17	0.255	94.5	99	0.62	7.12	155	700
	06/21/18	0.267 0.28	92.5 91.8	104 102	0.6 0.582	6.63	159 155	665 720
	09/18/18 06/05/19	0.28	85.3	102	0.362	6.92	161	718
	10/03/19	0.367	93.1	102	0.559	6.7	155	693
	06/09/20	0.241	94.9	24.6	0.205 J	6.88	26.8	400
	03/30/17	0.11	110	140	0.51	6.85	184	830
MW-5	05/10/17	0.115	114	139	0.54	6.86	183	900
	05/16/17	0.215	121	139	0.5	6.81	183	848
	06/08/17	0.122	118	139	0.55	6.8	182	862
	06/21/17	0.122	124	138	0.53	6.6	182	813
	06/26/17	0.121	129	139	0.54	6.79	184	900
	07/11/17	0.111	120	138	0.52	6.91	184	797
	07/19/17	0.001	0.005	137	0.53	6.84	181	857
	11/08/17	0.149	116	138	0.52	6.92	183	883
	06/25/18	0.119	114	140	0.56		183	820
	09/18/18	0.146	114	136	0.493	6.70	183	824
	06/03/19	0.146	113	143	0.596	7.06	187	864
	10/02/19	0.179	111	147	0.543	7.06	202	842
	09/06/20	0.152	117	138	0.370 J	6.84	182	858
MW-6	03/29/17	1.67 1.94	73.9 70.6	69 70	0.38 0.37	7.34 7.1	99 110	510 490
	05/11/17 05/16/17	1.84	76.3	70	0.37	7.1	107	506
	06/07/17	1.8	73.8	70	0.37	6.97	107	492
	06/22/17	1.97	79.9	69	0.37	7.11	100	510
	06/28/17	1.74	81.8	69	0.37	7.16	99	570
	07/12/17	1.76	81.6	69	0.35	7.10	98	557
	07/20/17	0.005	0.0002	69	0.39	6.9	97	530
	11/07/17	1.72	76.4	69	0.39	7.41	101	483
	06/22/18	0.0171	76.6	70.7	0.41		107	490
	09/18/18	2.09	70.8	72.5	0.353 J	6.97	114	505
	06/03/19	1.9	73.9	73	0.043	7.31	103	514
	10/02/19	1.83	73.6	76.4	0.357 J	7.29	115	507
	06/09/20	2.51	69.7	80.9	0.4	6.95	122	507

APPENDIX III ANALYTICAL RESULTS COLETO CREEK PRIMARY ASH POND

Sample	Date	В	Ca	CI	FI	field pH	SO ₄	TDS
Location	Sampled	Ь .	Ca	Ci	Г	neia pri	304	103
Prediction Limit:		1.26	143	118	0.61	6.51 7.33	148	966
MW-9	03/30/17	3.38	54.5	71	1.13	7.35	62	406
10100-9	05/10/17	3.16	52.7	66	1.29	7.48	59	410
	05/17/17	3.18	53.3	67	1.26	7.34	58	440
	06/07/17	3.12	52	67	1.26	7.03	57	380
	06/21/17	3.44	60.7	66	1.39	7.09	60	393
	06/26/17	3.31	60.6	67	1.4	7.23	61	407
	07/11/17	3.35	52.1	64	1.3	7.51	60	927
	07/19/17	3.4	50.2	63	1.4	7.29	62	407
	11/08/17	2.84	49.4	62	1.56	7.54	50	397
	06/21/18	2.94	46.9	71.5	1.5		35.7	370
	09/18/18	2.79	51.7	71.4	1.1	6.99	49.1	394
	06/05/19	4.26	48	74.7	1.38	7.4	66.3	421
	10/03/19	3.97	71.3	70.9	1.41	7.37	63.6	462
	09/06/20	4.10	47.4	63.7	1.58	7.21	54.9	397
MW-10	03/30/17	3.74	92.1	151	0.54	6.99	130	804
10100 - 10	05/10/17	7.32	56.1	82	0.83	7.23	96	582
	05/16/17	7.45	62.7	81	0.81	7.28	95	612
	06/08/17	7.54	58.1	77	0.84	7.23	92	604
	06/21/17	9.22	60.7	77	0.84	6.97	92	550
	06/26/17	8.21	63.4	78	0.84	7.14	92	530
	07/11/17	7.99	49.5	76	0.84	7.4	88	617
	07/19/17	8.74	56.6	74	0.86	7.25	86	533
	11/08/17	8.72	77.7	74	0.88	7.35	81	590
	06/22/18	8.47	84.4	76.7	0.88			550
	09/18/18	8.45	51.9	81.4	0.759	6.98	95.1	577
	06/03/19	8.28	43.1	87.2	0.953	7.52	97.7	587
	10/02/19	8.28	44.2	85.5	0.891	7.46	104	575
	06/09/20	7.58	46.9	76.9	0.818	7.13	96.5	575
MW-11	05/10/17	1.35	64.1	55	0.82	7.27	61	394
10100-11	05/16/17	1.39	62.3	52	0.85	7.29	58	362
	05/18/17	1.27	61.6	47.8	0.94		52.4	390
	06/07/17	1.23	59.8	48	0.93	7.25	50	372
	06/21/17	1.19	73.1	43.7	1.04	7.15	44	373
	06/26/17	1.15	82	44	1	7.3	43	407
	07/11/17	1.23	44.7	44	1	7.55	42	603
	07/19/17	1.17	48.6	43	1.01	7.21	42	360
	11/08/17	1.13	52.2	43	1.02	7.61	56	367
	06/21/18	1.07	69.6	44.3	0.96		61.4	355
	09/18/18	1.12	39.3	44.6	0.754	7.00	44.4	354
	06/03/19	1.27	43.4	42.2	0.837	7.55	44.8	372
	10/02/19	1.22	43.4	41.4	0.768	7.43	10.8	355
	06/09/20	1.20	56.6	44.4	0.571	6.88	67.7	414

Notes:

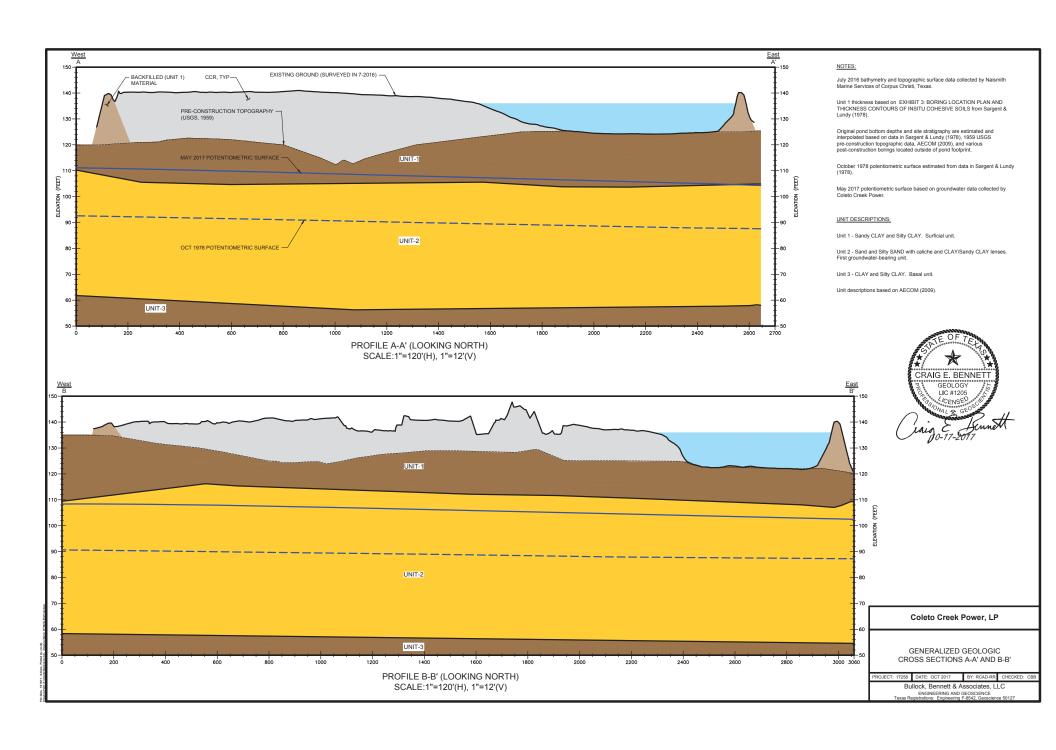
- 1. All concentrations in mg/L. pH in standard units.
- 2. J concentration is below sample quantitation limit; result is an estimate.

APPENDIX IV ANALYTICAL RESULTS COLETO CREEK PRIMARY ASH POND

Sample	Date	Sb	As	Ва	Be	Cd	Cr	Со	FI	Pb	Li	Hg	Мо	Se	TI	Ra 226	Ra 228	Ra 226/228
Location	Sampled						_									itu zzo	.tu zzo	Combined
GWPS:		0.006	0.128	2	0.004	0.005	0.10	0.0499	4	0.015	0.04	0.002	0.10	0.05	0.002			5
Upgradient We																		
BV-5	03/29/17	<0.0025		0.04510	<0.001	<0.001	<0.005	0.0497	0.540	<0.001	0.0206	< 0.0002	0.00925	< 0.005	<0.0015			1.503
	05/11/17	< 0.0025	0.00786	0.03680	<0.001	<0.001	< 0.005	0.0462	0.570	<0.001	0.018	< 0.0002	0.0101	< 0.005	<0.0015			1.555
	05/16/17	< 0.0025	0.00885	0.04520	<0.001	<0.001	< 0.005	0.0495	0.550	0.00151	0.0171	< 0.0002	0.0102	< 0.005	<0.0015			0.7550
	06/07/17	< 0.0025	0.00829	0.03760	<0.001	<0.001	< 0.005	0.0483	0.560	<0.001	0.0207	< 0.0002	0.01	<0.005	<0.0015			1.457
	06/20/17	< 0.0025	0.00841	0.04010	<0.001	<0.001	< 0.005	0.0499	0.580	<0.001	0.0208	< 0.0002	0.0114	< 0.005	<0.0015			0.4920
	06/27/17	< 0.0025	0.0083	0.04120	<0.001	<0.001	< 0.005	0.046	0.550	< 0.001	0.0198	< 0.0002	0.00942	<0.005	<0.0015			2.247
	07/12/17	< 0.0025	0.00849	0.04160	<0.001	<0.001	< 0.005	0.0484	0.560	<0.001	0.0188	< 0.0002	0.0096	< 0.005	<0.0015			2.139
	07/18/17	< 0.0025	0.00951	0.05780	<0.001	<0.001	0.00739	0.0453	0.560	0.00288	0.022	< 0.0002	0.0083	< 0.005	<0.0015			1.260
	06/19/18	<0.0025	0.0106	0.0336	<0.001	<0.001	0.0022 J	0.0513 J	0.970	<0.00074 J	0.016	< 0.0002	0.0139	<0.005	<0.0015	0.327	<1.680	2.01
	09/18/18	NA	0.00949	0.0436	NA	NA	0.00228 J	0.0487	0.667	0.00039 J	0.0206	NA	0.0102	NA	NA	0.302	<0.608	0.91
	06/05/19	<0.0008	0.0092	0.042	<0.0003	0.0009 J	< 0.002	0.0466	0.769	0.00144	0.0201	<0.00008	0.0109	<0.0020	<0.0005	<0.687	<1.130	<1.82
	10/03/19	<0.0008	0.00941	0.0441	<0.0003	<0.0003	0.00285 J	0.0437	0.753	0.0039	0.0172	<0.00008	0.0122	<0.0020	<0.0005	0.928	1.35	2.28
	06/09/20	<0.0008	0.00879	0.0462	< 0.0003	< 0.0003	0.00818	0.0486	0.498	0.00162	0.0201	<0.0000800	0.0120	< 0.00200	< 0.000500	0.363	0	0.363
BV-21	03/28/17	< 0.0025	0.0954	0.09630	<0.001	<0.001	< 0.005	0.0083	0.610	< 0.001	<0.010	< 0.0002	< 0.005	< 0.005	<0.0015			1.390
	05/09/17	< 0.0025	0.108	0.09720	<0.001	<0.001	< 0.005	0.00852	0.610	< 0.001	<0.010	< 0.0002	<0.005	< 0.005	<0.0015			0.7460
	05/17/17	< 0.0025	0.117	0.09440	<0.001	<0.001	< 0.005	0.00878	0.580	< 0.001	<0.010	< 0.0002	<0.005	< 0.005	< 0.0015			0.9190
	06/06/17	< 0.0025	0.118	0.09540	<0.001	<0.001	< 0.005	0.00806	0.590	< 0.001	< 0.010	< 0.0002	<0.005	<0.005	<0.0015			0.6710
	06/20/17	< 0.0025	0.121	0.1010	<0.001	< 0.001	< 0.005	0.00744	0.610	< 0.001	<0.010	< 0.0002	< 0.005	< 0.005	< 0.0015			1.672
	06/27/17	< 0.0025	0.128	0.1040	<0.001	<0.001	< 0.005	0.00841	0.600	< 0.001	<0.010	< 0.0002	<0.005	<0.005	<0.0015			0.5200
	07/10/17	< 0.0025	0.123	0.1100	<0.001	< 0.001	< 0.005	0.0086	0.580	< 0.001	<0.010	< 0.0002	< 0.005	< 0.005	< 0.0015			0.8050
	07/18/17	< 0.0025	0.115	0.1010	<0.001	<0.001	< 0.005	0.00784	0.600	< 0.001	<0.010	< 0.0002	< 0.005	< 0.005	<0.0015			4.812
	06/25/18	< 0.0025	0.0697	0.104	<0.001	<0.001	< 0.005	0.00682	0.620	<0.00074 J	0.00513 J	< 0.0002	0.00428 J	<0.005	<0.0015	0.267	<1.417	1.68
	09/18/18	NA	0.0625	0.109	NA	NA	< 0.002	0.0064	0.479	0.000555 J	0.00624 J	NA	0.00450 J	NA	NA	<0.31	<0.528	<0.838
	06/05/19	<0.0008	0.0531	0.105	<0.0003	<0.0003	< 0.002	0.00574	0.602	0.000354	0.00558 J	<0.00008	0.00685	< 0.0020	<0.0005	0.65	<0.687	1.337
	10/03/19	<0.0008	0.049	0.0963	<0.0003	<0.0003	<0.002	0.00542	0.588	0.000333 J	< 0.005	<0.00008	0.00784	<0.0020	<0.0005	0.346	1.54	1.89
	06/09/20	<0.0008	0.0793	0.132	< 0.0003	< 0.0003	0.007	0.00437 J	0.522	0.00033 J	< 0.005	<0.00008	0.00698	< 0.0020	< 0.0005	0.211	1.15	1.36
MW-8	03/28/17	< 0.0025	0.00839	0.0623	<0.001	<0.001	< 0.005	0.0236	0.490	< 0.001	0.0111	< 0.0002	0.0154	< 0.005	<0.0015			0.4520
	05/09/17	< 0.0025	0.00848	0.064	<0.001	<0.001	< 0.005	0.0272	0.440	< 0.001	0.0111	< 0.0002	0.0157	< 0.005	< 0.0015			0.4740
	05/15/17	< 0.0025	0.00926	0.064	<0.001	<0.001	< 0.005	0.0311	0.440	<0.001	0.0112	< 0.0002	0.016	< 0.005	<0.0015			0.6140
	06/06/17	< 0.0025	0.00912	0.0616	<0.001	<0.001	0.00744	0.0308	0.450	< 0.001	0.0107	< 0.0002	0.0157	< 0.005	<0.0015			0.1320
	06/20/17	< 0.0025	0.00885	0.0669	<0.001	<0.001	< 0.005	0.0297	0.430	< 0.001	0.0121	< 0.0002	0.0171	< 0.005	<0.0015			0.5380
	06/27/17	< 0.0025	0.00939	0.0633	<0.001	<0.001	< 0.005	0.0314	0.440	< 0.001	0.0115	< 0.0002	0.0163	< 0.005	<0.0015			0.9390
	07/10/17	< 0.0025	0.00902	0.0631	<0.001	<0.001	< 0.005	0.031	0.440	<0.001	0.0112	< 0.0002	0.0165	< 0.005	<0.0015			0.8040
	07/18/17	< 0.0025	0.00937	0.0635	<0.001	<0.001	< 0.005	0.0352	0.460	<0.001	0.0118	< 0.0002	0.0185	< 0.005	<0.0015			2.113
	06/25/18	<0.0025	0.0101	0.0632	<0.001	<0.001	< 0.005	0.029	0.520	0.0011	0.0107	< 0.0002	0.017	<0.005	<0.0015	<0.234	<1.204	<1.44
	09/18/18	NA	0.00896	0.0582	NA	NA	<0.00200	0.0237	0.402	<0.0003	0.0117	NA	0.0178	NA	NA	<0.281	<0.558	<0.84
	06/05/19	<0.0008	0.00946	0.0596	<0.0003	<0.0003	<0.002	0.0217	0.497	0.000355 J	0.011	<0.00008	0.0156	<0.0020	<0.0005	0.528	<0.619	1.147
[10/03/19	<0.0008	0.0083	0.0607	< 0.0003	<0.0003	<0.002	0.231	0.419	<0.0003	0.0106	<0.00008	0.0144	<0.0020	<0.0005	0.224	0.241	0.465
	06/09/20	<0.0008	0.00856	0.0599	<0.0003	<0.0003	< 0.002	0.0174	0.392 J	0.000479 J	0.0104	<0.00008	0.0158	< 0.002	< 0.0005	0.304	2.64	2.94

APPENDIX IV ANALYTICAL RESULTS COLETO CREEK PRIMARY ASH POND

Sample Location	Date Sampled	Sb	As	Ва	Be	Cd	Cr	Со	FI	Pb	Li	Hg	Мо	Se	TI	Ra 226	Ra 228	Ra 226/228 Combined
GWPS:	Gumpicu	0.006	0.128	2	0.004	0.005	0.10	0.0499	4	0.015	0.04	0.002	0.10	0.05	0.002			5
Downgradient '	Wells	0.000	020		0.00	0.000	00	0.0.00		0.0.0	0.0.	0.002	0.10	0.00	0.002			
MW-4	03/28/17	<0.0025	0.00738	0.0575	<0.001	<0.001	<0.005	0.007	0.610	<0.001	0.0192	<0.0002	< 0.005	< 0.005	<0.0015			0.4600
"""	05/09/17	<0.0025	0.00733	0.0576	<0.001	<0.001	<0.005	0.007	0.610	<0.001	0.0182	<0.0002	<0.005	<0.005	<0.0015			0.6940
	05/15/17	< 0.0025	0.00794	0.0556	<0.001	<0.001	<0.005	0.007	0.600	<0.001	0.0166	< 0.0002	< 0.005	< 0.005	<0.0015			1.451
	06/06/17	< 0.0025	0.0077	0.0556	<0.001	<0.001	<0.005	0.007	0.630	<0.001	0.0179	< 0.0002	< 0.005	< 0.005	<0.0015			0.1740
	06/20/17	< 0.0025	0.0081	0.0596	<0.001	<0.001	0.00877	0.008	0.620	<0.001	0.0195	<0.0002	< 0.005	< 0.005	<0.0015			0.5430
	06/27/17	< 0.0025	0.00786	0.0554	<0.001	<0.001	< 0.005	0.007	0.630	<0.001	0.0185	<0.0002	< 0.005	< 0.005	<0.0015			0.6390
	07/10/17	< 0.0025	0.00846	0.0582	< 0.001	< 0.001	< 0.005	0.009	0.620	< 0.001	0.0187	< 0.0002	< 0.005	< 0.005	< 0.0015			1.069
	07/18/17	< 0.0025	0.00815	0.0549	< 0.001	< 0.001	< 0.005	0.008	0.630	< 0.001	0.0183	< 0.0002	< 0.005	< 0.005	< 0.0015			0.1910
	06/21/18	< 0.0025	0.00843	0.0591	< 0.001	< 0.001	< 0.005	0.00711	0.600	<0.00072 J	0.0175	< 0.0002	< 0.005	< 0.005	< 0.0015	0.370	1.705	2.08
	09/18/18	NA	0.00793	0.0577	NA	NA	< 0.002	0.00673	0.582	< 0.0003	0.019	NA	< 0.002	NA	NA	1.610	< 0.543	2.15
	06/05/19	<0.0008	0.0079	0.0571	< 0.0003	< 0.0003	< 0.002	0.00729	0.670	< 0.0003	0.0195	<0.00008	< 0.002	<0.0020	< 0.0005	0.436	< 0.547	0.98
	10/03/19	<0.0008	0.00764	0.0532	< 0.0003	< 0.0003	< 0.002	0.00699	0.559	0.00101	0.017	<0.00008	< 0.002	< 0.002	< 0.0005	1.85	-0.102	1.85
	06/09/20	<0.0008	< 0.002	0.0376	< 0.0003	< 0.0003	< 0.002	< 0.003	0.205 J	< 0.0003	0.00751 J	<0.00008	0.0021 J	< 0.002	< 0.0005	0.0553	0.264	0.319
MW-5	03/30/17	< 0.0025	0.00953	0.0748	< 0.001	< 0.001	< 0.005	< 0.005	0.510	< 0.001	0.0192	< 0.0002	< 0.005	< 0.005	< 0.0015			1.443
	05/10/17	< 0.0025	0.00955	0.0706	< 0.001	< 0.001	< 0.005	< 0.005	0.540	< 0.001	0.0179	< 0.0002	< 0.005	< 0.005	< 0.0015			0.6150
	05/16/17	< 0.0025	0.00967	0.0708	< 0.001	< 0.001	< 0.005	< 0.005	0.500	< 0.001	0.0181	< 0.0002	< 0.005	< 0.005	< 0.0015			0.6410
	06/08/17	< 0.0025	0.00908	0.0701	< 0.001	< 0.001	< 0.005	< 0.005	0.550	< 0.001	0.0200	< 0.0002	< 0.005	< 0.005	< 0.0015			0.1790
	06/21/17	< 0.0025	0.00917	0.0767	< 0.001	< 0.001	< 0.005	< 0.005	0.530	< 0.001	0.0197	< 0.0002	< 0.005	< 0.005	< 0.0015			0.1060
	06/26/17	< 0.0025	0.00955	0.0735	< 0.001	< 0.001	< 0.005	< 0.005	0.540	< 0.001	0.0204	< 0.0002	< 0.005	< 0.005	< 0.0015			1.112
	07/11/17	< 0.0025	0.00945	0.0712	< 0.001	< 0.001	< 0.005	< 0.005	0.520	< 0.001	0.0183	< 0.0002	< 0.005	< 0.005	< 0.0015			0.5120
	07/19/17	< 0.0025	0.00941	0.0735	< 0.001	< 0.001	< 0.005	< 0.005	0.530	< 0.001	0.0186	< 0.0002	< 0.005	< 0.005	< 0.0015			0.1910
	06/25/18	< 0.0025	0.00998	0.0733	< 0.001	< 0.001	< 0.005	< 0.005	0.560	< 0.001	0.0182	< 0.0002	< 0.005	< 0.005	< 0.0015	< 0.251	<1.369	<1.62
	09/18/18	NA	0.00945	0.0697	NA	NA	< 0.002	< 0.003	0.493	< 0.0003	0.0195	NA	< 0.002	NA	NA	<0.282	< 0.606	<0.89
	06/03/19	<0.0008	0.00948	0.0678	<0.0003	<0.0003	< 0.002	< 0.003	0.596	< 0.0003	0.0206	<0.00008	< 0.002	< 0.002	< 0.0005	< 0.619	< 0.917	<1.54
	10/02/19	<0.0008	0.00918	0.067	<0.0003	<0.0003	<0.002	< 0.003	0.543	< 0.0003	0.0187	<0.00008	< 0.002	< 0.002	< 0.0005	0.47	0.117	0.587
	06/09/20	<0.0008	0.00891	0.0689	< 0.0003	<0.0003	< 0.002	< 0.003	0.370 J	< 0.0003	0.0192	<0.00008	< 0.002	< 0.002	< 0.0005	0.171	0.211	0.382
MW-6	03/29/17	< 0.0025	0.00827	0.0900	<0.001	<0.001	< 0.005	< 0.005	0.380	< 0.001	<0.010	< 0.0002	0.00749	< 0.005	< 0.0015			1.009
	05/11/17	<0.0025	0.00738	0.0758	<0.001	<0.001	< 0.005	<0.005	0.370	<0.001	0.0101	< 0.0002	0.0176	<0.005	<0.0015			0.8250
	05/16/17	< 0.0025	0.00803	0.0784	<0.001	<0.001	< 0.005	< 0.005	0.360	< 0.001	<0.010	< 0.0002	0.0131	< 0.005	< 0.0015			0.7740
	06/07/17	<0.0025	0.00772	0.0798	<0.001	<0.001	< 0.005	<0.005	0.370	<0.001	<0.010	< 0.0002	0.00949	<0.005	<0.0015			0.6640
	06/22/17	<0.0025	0.00764	0.083	<0.001	<0.001	< 0.005	<0.005	0.370	<0.001	0.0109	< 0.0002	0.0084	< 0.005	<0.0015			0.2150
	06/28/17	<0.0025	0.00779	0.0842	<0.001	<0.001	< 0.005	<0.005	0.370	<0.001	<0.010	< 0.0002	0.00806	< 0.005	<0.0015			1.730
	07/12/17	< 0.0025	0.0077	0.0819	<0.001	<0.001	< 0.005	< 0.005	0.350	<0.001	<0.010	< 0.0002	0.0076	< 0.005	<0.0015			1.012
	07/20/17	<0.0025	0.001	0.0010	<0.001	<0.001	< 0.005	<0.005	0.390	<0.001	<0.010	< 0.0002	0.001	< 0.005	<0.0015			0.3660
	06/22/18	<0.0025	0.00861	0.0912	<0.001	<0.001	< 0.005	< 0.005	0.410	<0.001	0.00924 J	<0.0002	0.00837	<0.005	<0.0015	< 0.309	<1.243	<1.55
	09/18/18	NA	0.008	0.0828	NA	NA	<0.002	<0.003	0.353 J	0.000349 J	0.0107	NA	0.0274	NA	NA	<0.196	1.06	1.256
	06/03/19	<0.0008	0.00799	0.0894	< 0.0003	< 0.0003	<0.002	< 0.003	0.438	<0.0003	0.00968 J	<0.00008	0.00884	<0.0020	< 0.0005	<0.407	< 0.623	<1.03
	10/02/19	<0.0008	0.00775	0.0876	<0.0003	<0.0003	<0.002	<0.003	0.357 J	<0.0003	0.00875 J	<0.00008	0.00875	<0.0020	<0.0005	0.715	1.23	1.94
	06/09/20	<0.0008	0.00799	0.078	<0.0003	<0.0003	< 0.002	< 0.003	0.4	< 0.0003	0.0113	<0.00008	0.0357	< 0.002	< 0.0005	0.00643	0.127	0.134


APPENDIX IV ANALYTICAL RESULTS **COLETO CREEK PRIMARY ASH POND**

Sample Location	Date Sampled	Sb	As	Ва	Ве	Cd	Cr	Co	FI	Pb	Li	Hg	Мо	Se	TI	Ra 226	Ra 228	Ra 226/228 Combined
GWPS:	Sampleu	0.006	0.128	2	0.004	0.005	0.10	0.0499	4	0.015	0.04	0.002	0.10	0.05	0.002			5
MW-9	03/30/17	<0.0025	0.00909	0.121	<0.004	<0.001	<0.005	<0.005	1.130	0.00217	<0.010	<0.002	0.0747	<0.005	<0.002			1.353
10100-9	05/10/17	<0.0025	0.00909	0.121	<0.001	<0.001	<0.005	<0.005	1.290	0.00217	<0.010	<0.0002	0.0747	<0.005	<0.0015			0.4800
	05/17/17	<0.0025	0.00958	0.103	<0.001	<0.001	<0.005	<0.005	1.260	0.00433	<0.010	<0.0002	0.0900	<0.005	<0.0015			0.3600
	06/07/17	<0.0025	0.00938	0.101	<0.001	<0.001	<0.005	<0.005	1.260	<0.00377	<0.010	<0.0002	0.099	< 0.005	<0.0015			0.4760
	06/21/17	<0.0025	0.00937	0.100	<0.001	<0.001	<0.005	<0.005	1.390	0.001000	<0.010	<0.0002	0.1020	< 0.005	<0.0015			1.579
	06/26/17	<0.0025	0.00937	0.119	<0.001	<0.001	0.0102	<0.005	1.400	0.00130	<0.010	<0.0002	0.1020	< 0.005	<0.0015			1.023
H	07/11/17	<0.0025	0.0107	0.114	<0.001	<0.001	0.00566	<0.005	1.300	0.00217	<0.010	<0.0002	0.1050	< 0.005	<0.0015			0.8630
	07/19/17	<0.0025	0.0103	0.103	<0.001	<0.001	< 0.005	<0.005	1.400	<0.00124	<0.010	<0.0002	0.1030	< 0.005	<0.0015			0.5840
H	06/21/18	<0.0025	0.0103	0.101	<0.001	<0.001	<0.005	<0.005	1.500	<0.001000	<0.010	<0.0002	0.0617	<0.005	<0.0015	0.608	<1.303	1.91
	09/18/18	NA	0.0104	0.0985	NA	NA	<0.003	<0.003	1.100	< 0.000723	0.00639 J	NA	0.0502	NA	NA	0.618	<0.638	1.26
	06/05/19	<0.0008	0.0103	0.102	<0.0003	<0.0003	<0.002	<0.003	1.380	<0.0003	0.00545 J	<0.00008	0.0302	<0.002	<0.0005	<0.402	<0.683	<1.085
	10/03/19	<0.0008	0.0109	0.102	0.000689 J	<0.0003	<0.002	0.00337 J	1.410	0.00876	0.00545 J	<0.00008	0.0507	0.0041 J	<0.0005	0.577	0.747	1.32
H	06/09/20	<0.0008	0.0103	0.0865	< 0.0003	<0.0003	<0.002	< 0.00337 3	1.58	0.00070 0.000577 J	< 0.005	<0.00008	0.0307	<0.002	<0.0005	0.132	-0.0432	0.132
MW-10	03/30/17	<0.0008	0.0120	0.0844	<0.0003	<0.001	< 0.002	<0.005	0.540	< 0.001	0.0179	<0.0000	0.0774	< 0.002	<0.0005	0.132	-0.0432	1.439
10100-10	05/10/17	<0.0025	0.0116	0.0554	<0.001	<0.001	0.00533	<0.005	0.830	<0.001	0.0173	<0.0002	0.102	<0.005	<0.0015			0.8880
	05/16/17	<0.0025	0.0146	0.0598	<0.001	<0.001	< 0.005	<0.005	0.810	<0.001	0.0122	<0.0002	0.102	< 0.005	<0.0015			0.1830
	06/08/17	<0.0025	0.0130	0.0544	<0.001	<0.001	<0.005	<0.005	0.840	<0.001	0.0123	<0.0002	0.106	<0.005	<0.0015			0.06700
	06/21/17	<0.0025	0.0144	0.054	<0.001	<0.001	<0.005	<0.005	0.840	<0.001	0.0113	<0.0002	0.100	< 0.005	<0.0015			0.7090
	06/26/17	<0.0025	0.0149	0.0547	<0.001	<0.001	0.0177	<0.005	0.840	<0.001	0.0137	<0.0002	0.116	<0.005	<0.0015			0.7180
	07/11/17	<0.0025	0.0160	0.0508	<0.001	<0.001	<0.005	<0.005	0.840	<0.001	0.0137	<0.0002	0.116	< 0.005	<0.0015			1.713
 	07/11/17	<0.0025	0.0146	0.0633	<0.001	<0.001	0.00963	<0.005	0.860	<0.001	0.0113	<0.0002	0.114	<0.005	<0.0015			2.132
	06/22/18	<0.0025	0.0146	0.0692	<0.001	<0.001	< 0.00903	<0.005	0.88	<0.001 <0.00095 J	0.0127	<0.0002	0.121	<0.005	<0.0015	<0.212	<1.192	<1.40
 	09/18/18	NA	0.0134	0.0032	NA	NA	<0.003	<0.003	0.759	< 0.0003	0.0122	NA	0.134	NA	NA	0.151	<0.848	0.999
	06/03/19	<0.0008	0.0140	0.0440	<0.0003	<0.0003	<0.002	<0.003	0.759	<0.0003	0.0141	<0.00008	0.123	<0.002	<0.0005	<0.203	0.814	1.017
 	10/02/19	<0.0008	0.0142	0.0420	<0.0003	<0.0003	<0.002	<0.003	0.891	<0.0003	0.0133	<0.00008	0.106	<0.002	<0.0005	-0.0288	0.901	0.901
 	06/09/20	<0.0008	0.014	0.0444	<0.0003	<0.0003	<0.002	0.00334 J	0.818	<0.0003	0.0127	<0.00008	0.100	<0.002	<0.0005	0.0250	1.22	1.31
MW-11	05/10/17	<0.0025	0.0156	0.0899	<0.0003	<0.001	<0.005	< 0.005	0.82	0.00239	0.013	<0.0002	0.0082	<0.002	<0.0005			0.4560
	05/16/17	<0.0025	0.0130	0.0869	<0.001	<0.001	0.00731	<0.005	0.85	0.00239	0.0123	<0.0002	0.00841	<0.005	<0.0015			1.418
	05/18/17	<0.0025	0.0188	0.0779	<0.001	<0.001	<0.00751	<0.005	0.03	0.00204	0.0122	<0.0002	0.00781	<0.005	<0.0015			0.6390
	06/07/17	<0.0025	0.0175	0.0835	<0.001	<0.001	<0.005	<0.005	0.93	0.00204	0.0122	<0.0002	0.00744	<0.005	<0.0015			0.5020
	06/21/17	<0.0025	0.0203	0.0822	<0.001	<0.001	<0.005	<0.005	1.04	0.00322	0.0136	<0.0002	0.00659	<0.005	<0.0015			1.084
	06/26/17	<0.0025	0.0237	0.0954	<0.001	<0.001	0.0131	<0.005	1.00	0.00593	0.0176	<0.0002	0.00796	<0.005	<0.0015			3.067
	07/11/17	<0.0025	0.0212	0.0725	<0.001	<0.001	<0.005	< 0.005	1.00	<0.001	0.012	<0.0002	0.00765	<0.005	<0.0015			0.7530
	07/11/17	<0.0025	0.0224	0.0709	<0.001	<0.001	0.00762	<0.005	1.01	0.0018	0.012	<0.0002	0.00783	<0.005	<0.0015			1.551
	06/21/18	<0.0025	0.0367	0.0805	<0.001	<0.001	< 0.005	<0.005	0.96	0.00241	0.0135	<0.0002	0.00465	<0.005	<0.0015	<0.234	<1.312	<1.55
	09/18/18	NA	0.0382	0.0645	NA	NA	<0.002	<0.003	0.754	< 0.0003	0.0139	NA	0.00445 J	NA	NA	<0.188	0.597	0.785
	06/03/19	<0.0008	0.0379	0.0834	<0.0003	<0.0003	<0.002	< 0.003	0.0837	<0.0003	0.0154	<0.00008	0.00316 J	<0.002	<0.0005	<0.481	0.991	1.472
	10/02/19	<0.0008	0.0379	0.0744	<0.0003	<0.0003	<0.002	<0.003	0.768	0.000391 J	0.014	<0.00008	0.00259 J	<0.002	<0.0005	1.57	0.478	2.040
	06/09/20	<0.0008	0.0293	0.0948	<0.0003	<0.0003	<0.002	<0.003	0.571	0.000675 J	0.014		0.00235 J	<0.002	<0.0005	0.163	1.31	1.480
Notes:	00/00/20	10.0000	0.0200	3.00-10	10.0000	-0.0000	10.00Z	10.000	0.071	0.0000700	0.0100	-0.00000	0.002100	10.002	10.0000	0.100	1.01	1.700

- All concentrations in mg/L. Ra 226/228 Combined in pCi/L.
 J concentration is below sample quantitation limit; result is an estimate.
 Non-detect Ra isotope results were assigned a value equal to the minimum detectable concentration.
 NA = Not analyzed.

ATTACHMENT 6	5 – SITE HYDRO	GEOLOGY AN	ID STRATIGRAP SECTIONS	HIC CROSS- OF THE SITE

CONCEPTUAL SITE MODEL AND DESCRIPTION OF SITE HYDROGEOLOGY (PRIMARY ASH POND)

The Coleto Creek conceptual site model (CSM) and Description of Site Hydrogeology for the Primary Ash Pond (PAP), located near Fannin, Texas are described in the following sections.

REGIONAL SETTING

The Site is located on the Lissie Formation which is part of the Houston Group (BBA, 2017). The Lissie Formation is a deltaic plain that consists primarily of undifferentiated alluvium, fine-grained channel facies, and fine-grained overbank facies (Moore and Wermund, 1993). The Lissie Formation is middle Pleistocene in age and is described as primarily sands, silts, and clays containing iron and manganese nodules, calcareous concretions, and organic-rich lenses (Moore and Wermund, 1993). Below the Lissie Formation are the Goliad Formation, the Oakville Sandstone/Fleming Formation, and the Catahoula Formations which consist primarily of sand, clays, sands, and tuffs respectively (Nicot et. al, 2010).

Within the central coastal plain of Texas, the Lissie Formation's outcrop is a belt ranging from approximately 10 to 20 miles wide (Solis, 1981). Located within the western region of the Gulf Coast Basin, Lissie sediments extend into the subsurface, dipping southeast at 5 to 20 ft per mile (Doering, 1935). Maximum outcrop thickness is estimated to be about 600 ft in East Texas and 400 ft in South Texas (Plummer, 1932).

SITE GEOLOGY

The Site is located on the Lissie Formation described above (BBA, 2017). Surficial soils in the vicinity of the Site include the following (described in order from shallow to deep) based on Site soil borings (BBA, 2017):

- Upper Confining Unit (Unit 1) a laterally continuous low permeability unit approximately 11 to 25 feet thick that contains primarily sandy clay and clayey sand with intermittent layers of silty clay.
- Intermediate Sand Unit (Unit 2, Uppermost Aquifer) a laterally continuous sand and silty sand unit approximately 40 to 54 feet thick that contains discontinuous cohesive layers and variable mineralized zones.
- Lower Confining Unit (Unit 3) a laterally continuous basal clay unit greater than 25 feet hick consisting primarily of clay and silty clay.

The geologic units discussed above are shown on cross-sections attached to this demonstration.

SITE HYDROGEOLOGY

The Site is located in the Coleto Creek Watershed, adjacent to Sulphur Creek, part of the Coleto Creek Reservoir. The Coleto Creek Reservoir was constructed in the 1970s for use as a cooling pond. The Uppermost Aquifer is monitored by nine monitoring wells surrounding the PAP as part of the CCR groundwater monitoring system. All wells included in the CCR monitoring system are screened in the intermediate sand unit (i.e., uppermost aquifer) at the Site (BBA, 2017).

The CCR groundwater monitoring system consists of nine monitoring wells installed in the Uppermost Aquifer and adjacent to the PAP (BV-5, BV-21, MW-4, MW-5, MW-6, MW-8, MW-9, MW10, and MW-11) (see Monitoring Well Location Map, and Well Construction Diagrams and Drilling Logs attached to this demonstration). The unit utilizes three background monitoring wells (BV-5, BV-21, and MW-8) as part of the CCR groundwater monitoring system.

Hydraulic Conductivity

Hydraulic conductivity results from field testing (i.e., slug tests) at monitoring wells BV-5, BV-21, BV-22, MW-9, MW-10, and MW-11 in the intermediate sand unit (Uppermost Aquifer) ranged from approximately 5.14×10^{-4} to 1.37×10^{-2} centimeters per second (cm/s), with a geometric mean of approximately 3.35×10^{-5} cm/s (BBA, 2017). Generally, hydraulic conductivities upgradient of the PAP were higher than hydraulic conductivities downgradient of the PAP, which was attributed to the varying clay and silt contents of the sandy soils (BBA, 2017).

Groundwater Elevations, Flow Direction and Velocity

Groundwater elevations adjacent to the Site for the eight CCR background monitoring events from March to July 2017 ranged from approximately 101.1 feet North American Vertical Datum of 1988 (NAVD88) to 113.5 feet NAVD88, corresponding to groundwater depths from approximately 14.3 to 29.9 feet below ground surface (BBA, 2017). Groundwater typically flows east to southeast across the PAP towards Sulphur Creek, part of the Coleto Creek Reservoir. During the background monitoring events, the average horizontal hydraulic gradient was calculated as 0.0027 feet per foot (ft/ft) and 0.0029 ft/ft across the northern and southern boundaries of the PAP. The average groundwater flow velocity was between 0.13 and 9.46 feet per day (ft/day) (BBA, 2017). These groundwater elevations, flow direction, and flow velocities are consistent with the groundwater potentiometric map for October 2, 2019 provided as an attachment to this demonstration.

REFERENCES

Doering, JA. 1935. Post-Fleming surface formations of coastal southeast Texas and southern Louisiana: American Association of Petroleum Geologists Bulletin, v.19, no.5, p. 651-688.

Moore, David W. and Wermund, E.G., Jr. 1993. Quaternary Geologic Map of Austin 4° x 6° Quadrangle, United States. Quaternary Geologic Atlas of the United States. Map I-1420 (NH-14). Scale 1:1,000,000.

Nicot, Jean-Philippe, Bridget R Scanlon, Changbing Yang, and John B Gates. 2010. Geological and Geographical Attributes of the South Texas Uranium Province, Texas Commission on Environmental Quality and Bureau of Economic Geology. April 2010.

Plummer, FB. 1932. Cenozoic Systems in Texas, Part 3, in The Geology of Texas: University of Texas, Austin, Bulletin 3232, p.729-795.

Solis, Raul Fernando. 1981. Upper Tertiary and Quaternary Depositional Systems, Central Coastal Plain, Texas, University of Texas at Austin Bureau of Economic Geology Report of Investigations No. 108.

ATTACHMENT 7 – STRUCTURAL STABILITY AND SAFETY FACTOR **ASSESSMENTS**

COAL COMBUSTION RESIDUALS SURFACE IMPOUNDMENT HISTORY OF CONSTRUCTION AND INITIAL HAZARD POTENTIAL ASSESSMENT, STRUCTURAL INTEGRITY ASSESSMENT, AND SAFETY FACTOR ASSESSMENT (REV. 1)

COLETO CREEK POWER STATION FANNIN, TEXAS

JANUARY 24, 2018 (ORIGINAL VERSION: OCTOBER 13, 2016)

Prepared for:

COLETO CREEK POWER, LP

Coleto Creek Power Station Fannin, Texas

Prepared by:

BULLOCK, BENNETT & ASSOCIATES, LLC

Engineering and Geoscience Registrations: Engineering F-8542, Geoscience 50127

> 165 N. Lampasas Street Bertram, Texas 78605 (512) 355-9198

> BBA Project No. 17266

Certification Statement 40 *CFR* § 257.73(c) - Structural Integrity Criteria for Existing CCR Surface Impoundments, History of Construction

CCR Unit: Coleto Creek Power, LP; Coleto Creek Power Station; Coleto Creek Primary Ash Pond

I, Daniel Bullock, being a Registered Professional Engineer in good standing in the State of Texas, do hereby certify, to the best of my knowledge, information, and belief that the information contained in this assessment report has been prepared in accordance with the accepted practice of engineering. I certify, for the above referenced CCR Unit, that the information contained in the History of Construction, dated January 24, 2018, meets the requirements of $40 \, CFR \, \S \, 257.73$ (c).

1/24/2018

Daniel B. Bullock, P.E. (TX 82596)

Janel B. Sullah

Certification Statement 40 CFR § 257.73(a) - Structural Integrity Criteria for Existing CCR Surface Impoundments, Potential Hazard Classification Assessment

CCR Unit: Coleto Creek Power, LP; Coleto Creek Power Station; Coleto Creek Primary Ash Pond

I, Daniel Bullock, being a Registered Professional Engineer in good standing in the State of Texas, do hereby certify, to the best of my knowledge, information, and belief that the information contained in this assessment report has been prepared in accordance with the accepted practice of engineering. I certify, for the above referenced CCR Unit, that the information contained in the Potential Hazard Classification Assessment, dated January 24, 2018, meets the requirements of $40 \, CFR \, \S \, 257.73$ (a).

1/24/2018

Daniel B. Bullock, P.E. (TX 82596)

Janiel B. Sullah

Certification Statement 40 CFR § 257.73(d) - Structural Integrity Criteria for Existing CCR Surface Impoundments, Initial Structural Stability Assessment

CCR Unit: Coleto Creek Power, LP; Coleto Creek Power Station; Coleto Creek Primary Ash Pond

I, Daniel Bullock, being a Registered Professional Engineer in good standing in the State of Texas, do hereby certify, to the best of my knowledge, information, and belief that the information contained in this assessment report has been prepared in accordance with the accepted practice of engineering. I certify, for the above referenced CCR Unit, that the information contained in the Initial Structural Stability Assessment, dated January 24, 2018, meets the requirements of 40 *CFR* § 257.73(d).

1/24/2018

Daniel B. Bullock, P.E. (TX 82596)

Daniel B. Sullah

Certification Statement $40\,CFR$ § 257.73(e) - Structural Integrity Criteria for Existing CCR Surface Impoundments, Initial Safety Factor Assessment

CCR Unit: Coleto Creek Power, LP; Coleto Creek Power Station; Coleto Creek Primary Ash Pond

I, Daniel Bullock, being a Registered Professional Engineer in good standing in the State of Texas, do hereby certify, to the best of my knowledge, information, and belief that the information contained in this assessment report has been prepared in accordance with the accepted practice of engineering. I certify, for the above referenced CCR Unit, that the information contained in the Initial Safety Factor Assessment, dated January 24, 2018, meets the requirements of $40 \, CFR \, \S \, 257.73$ (e).

1/24/2018

Daniel B. Bullock, P.E. (TX 82596)

Famil B. Sullah

TABLE OF CONTENTS

LIST) OF [1	FABLES	ii
LIST	OF I	TIGURES	ii
LIST	OF A	APPENDICES	ii
1.0		RODUCTION	
2.0	HIST	TORY OF CONSTRUCTION	2
	2.1	Owner and Operator of CCR Unit	2
	2.2	CCR Unit Location	2
	2.3	Primary Ash Pond Statement of Purpose	2
	2.4	Watershed Description	3
	2.5	Primary Ash Pond Foundation and Abutment Material Description	4
	2.6	Primary Ash Pond Construction Summary	4
	2.7	Primary Ash Pond Drawings	7
	2.8	Primary Ash Pond Instrumentation	7
	2.9	Primary Ash Pond Area-Capacity Curves	7
	2.10	Primary Ash Pond Spillway and Diversion Design Features	7
	2.11	Primary Ash Pond Surveillance, Maintenance, and Repair Provisions	8
	2.12	Primary Ash Pond Structural Stability History	8
3.0	INIT	TAL POTENTIAL HAZARD CLASS ASSESSMENT	9
	3.1	Dam Breach Analysis	10
	3.2	Loss of Life Evaluation	12
	3.3	Economic and/or Environmental Loss Evaluation	12
	3.4	Hazard Potential Classification	13
4.0	INIT	TAL STRUCTURAL STABILITY ASSESSMENT	14
5.0	INIT	IAL SAFETY FACTOR ASSESSMENTS	17
	5.1	Liquefaction Assessment	24
	5.2	Initial Safety Factor Assessment Summary	27
5.0	REE	FRENCES	28

LIST OF TABLES

Table 5-1	Soil Strength Parameters used in Geotechnical Stability Analysis
Table 5-2	Required Factors of Safety
Table 5-3	Slope Stability Analysis Summary

LIST OF FIGURES

Figure 1-1A	Site Location Map
Figure 1-1B	Site Location Map
Figure 2-1	U.S.G.S. Area Map
Figure 2-2	Coleto Creek Watershed
Figure 2-3	Thickness Map of In-Situ Cohesive Soils
Figure 2-4	Surface Impoundment Configuration
Figure 2-5A	Ash Pond Plan and Cross Sections
Figure 2-5B	Bathymetric Survey Plan View
Figure 2-5C	Bathymetric Survey Sections
Figure 2-6	Capacity for Primary Ash Pond

LIST OF APPENDICES

Appendix A	Geotechnical Borelogs
Appendix B	Geotechnical Laboratory Data
Appendix C	Slide 7.0 Stability Analysis Models
Appendix D	Liquefaction Assessment Calculations
Appendix E	Guadalupe-Blanco River Authority Lake Area-Capacity Summaries

1.0 INTRODUCTION

Coleto Creek Power Station is located at 45 FM 2987 just outside the city of Fannin in Goliad County, Texas. The power station consists of one coal-fired boiler. Bottom ash and fly ash, or coal combustion residuals (CCR), generated in the boiler are either shipped off-site for beneficial re-use or managed in an on-site CCR surface impoundment (Coleto Creek Primary Ash Pond). Figures 1-1A and 1-1B provide site location maps showing the Primary Ash Pond configuration.

In April 2015, the Environmental Protection Agency (EPA) enacted rules codified in 40 *CFR* Part 257 to address potential risks associated with operating CCR surface impoundments at coal-fired power plants. This report has been prepared to specifically address the requirements identified in §257.73 *Structural Integrity Criteria for Existing CCR Surface Impoundments*¹. Section 2.0 of the report provides the History of Construction (§257.73(c)(1)(i – xii)). Section 3.0 contains the Initial Potential Hazard Classification Assessment (§257.73(a)(2)), Section 4.0 provides the Initial Structural Stability Assessment (§257.73(d)(1)), and Section 5.0 includes the Initial Safety Factor Assessment (§257.73(e)(1).

¹This revised History of Construction and Initial Hazard Potential Assessment, Structural Integrity Assessment, and Safety Factor Assessment replaces the initial version of this report dated October 13, 2016.

2.0 HISTORY OF CONSTRUCTION

The following History of Construction has been prepared in accordance with the requirements defined in $\S257.73$ (c)(1)(i – xii).

2.1 Owner and Operator of CCR Unit

The Coleto Creek Power Station is owned and operated by Coleto Creek Power, LP. The address is as follows:

Coleto Creek Power Station 45 FM 2987 PO Box 8 Fannin, Texas 77960 Primary Ash Pond SWR No. 31911, Unit No. 001

2.2 CCR Unit Location

The Coleto Creek Power Station and associated CCR surface impoundment (Primary Ash Pond) is located just outside the city of Fannin in Goliad County, Texas on approximately 8,000 total acres. The Primary Ash Pond is approximately 190 acres in surface area with a reported storage capacity of 2,700 acre-feet (S&L, December 1978). The Primary Ash Pond is located adjacent to the facility's Evaporation Pond and Secondary Pond. Figure 2-1 (U.S.G.S. Area Map) shows the CCR surface impoundment on the most recent US Geological Survey (USGS) 7½ minute quadrangle topographic map.

2.3 Primary Ash Pond Statement of Purpose

The Coleto Creek Primary Ash Pond was constructed between 1976 and 1977 during the Power Station site development. The pond was designed and constructed to accommodate wastes from two coal-fired boilers (S&L, December 1978). However, only one boiler has been constructed and operated at the facility.

Bottom ash is collected from the boiler, combined with water, and transferred in slurry form for disposal in the facility's surface impoundment. Fly ash is collected from the boiler exhaust using a baghouse. The fly ash is transported pneumatically to two storage silos. From

there, the fly ash is loaded into enclosed dry haul hoppers for off-site beneficial reuse. Fly ash not meeting required beneficial reuse specifications is combined with water and pumped to the facility's Primary Ash Pond for disposal. CCR solids settle out of the conveyance water in the Primary Ash Pond and the treated water overflows stoplogs within an outlet (weir box) structure then flows through a 30" diameter pipe to the smaller Secondary Pond as needed to control water levels. Water from the Secondary Pond can be recirculated to the ash sluice system or discharged in accordance with the facility's TPDES permit. The Secondary Pond has never received more than deminimis quantities of CCR; therefore, it is not subject to the CCR Rule.

Other plant wastes may also reportedly be sluiced into the Coleto Creek Primary Ash Pond including aqueous lab waste, boiler chemical cleaning rinseate, air preheater cleaning rinseate, air preheater cleaning residue, basin solids, de-ionizer regenerate wastewater, heat exchanger cleaning rinseate, waste de-ionizer resin beads, waste molybdate contaminated cooling water, waste filter media, boiler blowdown, demineralizer effluent, storm water, low volume waste, and effluent water/wastewater from plant processes (S&L, 1981).

2.4 Watershed Description

Coleto Creek Power Station is located in the lower half of the Coleto Creek Watershed (Figure 2-2) which is maintained by the Guadalupe-Blanco River Authority (GBRA). Coleto Creek is approximately 27 miles long, beginning in DeWitt County and travels through Goliad and Victoria Counties before its confluence with the Guadalupe River (GBRA, 2013). Approximately 558 square miles drain into the Coleto Creek Watershed. Typical land uses in the watershed include farming, ranching, oil and gas production and more recently, in-situ uranium mining. The only urbanized area in the watershed is the small city of Yorktown located upstream of the Power Station in DeWitt County.

Coleto Creek Reservoir Dam was constructed in the late 1970s to create the approximate 3,100 surface acre Coleto Creek Reservoir which serves as a cooling pond for the Coleto Creek Power Station. The Power Station discharges approximately 360,000 gallons per minute of water to the reservoir (GBRA, 2013). Perdido Creek, Turkey Creek, and Sulphur Creek also feed into the reservoir. Although the reservoir is managed by the GBRA, it is reportedly wholly owned by Coleto Creek Power, LP up to an elevation of 104 feet MSL.

2.5 Primary Ash Pond Foundation and Abutment Material Description

The Coleto Creek Primary Ash Pond was designed and constructed under the guidance of Sargent & Lundy Engineers (S&L). As part of the design process, S&L advanced 63 soil borings and installed eight monitoring wells in the immediate vicinity of the pond. Based on the information collected, the pond is constructed within a surface deposit of cohesive soils consisting of mostly clayey sand and silty clay with varying amounts of caliche. The soils are classified as CH, CL, and SC soils using the Unified Soil Classification System. These soils range in thickness from 4 to 20 feet, and average 9 feet beneath the Primary Ash Pond and Secondary Pond (average thickness data for the Primary Ash Pond only is not provided in the report) (S&L, December 1978). Figure 2-3 provides the Thickness Contour Map for In-Situ Cohesive Soils in the vicinity of the Primary Ash Pond. The impoundment dikes are continuous and do not include a conventional spillway, thus there are no abutments with other structures.

2.6 Primary Ash Pond Construction Summary

As noted in Section 2.3, the Coleto Creek Primary Ash Pond was constructed between 1976 and 1977 during overall site development. Construction was performed by H. B. Zachary Construction with full-time on-site inspection by S&L. Field testing of site soils and construction materials was performed by Trinity Testing Laboratory, Inc. In general, the Primary Ash Pond dikes have a total interior circumference of approximately 10,975 feet and a height ranging from approximately 4 feet up to 39 feet. The maximum reported storage volume is 2,700 acre-feet in the Primary Ash Pond (S&L, December 1978).

As further described below, a topographic and bathymetric survey was conducted for the Primary Ash Pond in July 2016. Results of that survey were combined with assumptions regarding the original base elevation of the pond (limited as-built base elevation data is available) to generate area-capacity estimates for use in subsequent assessments presented in this report. The area-capacity estimates generated using 2016 data indicate that the top of dike capacity is approximately 3,700 acre-ft, or nearly 1,000 acre-ft more than originally reported by S&L. The originally reported 2,700 acre-ft corresponds to an approximate elevation of 135 feet in the 2016 assessment, which is also the operating level identified in the S&L report. For the purposes of this report, the larger capacity is used where appropriate.

In-situ cohesive soils were used as the Primary Ash Pond lining and the geotechnical characteristics of those soils are documented in the S&L construction summary report dated December, 1978. Laboratory geotechnical testing was performed on representative samples collected post-construction from the borings advanced in the in-situ liner soils. The median laboratory permeability was reported as 3.8x10⁻⁸ cm/sec. The average plasticity index, liquid limit, and fines content were listed as 23%, 42%, and 40%, respectively. S&L concluded that the soil liner as constructed overall either met or exceeded requirements for a 3-foot thick compacted clay liner of 1x10⁻⁷ cm/sec permeability in accordance with Texas Department of Water Resources technical guidelines for the design and construction of waste water ponds that were in place at the time of construction (S&L, December 1978).

Primary Ash Pond dikes were constructed using controlled and compacted cohesive fill excavated from borrow areas around the Plant site (S&L, December 1978). As noted previously, site soils generally consist of clayey sand and silty clay, with various amounts of caliche. The dikes were constructed with side slopes ranging from 2.5 and/or 3.0 horizontal to 1.0 vertical. This side slope was specified in accordance with the Bureau of Reclamation Design of Small Dams, 1974, for small homogenous dams constructed with cohesive fill on a stable foundation. Side slopes were reportedly seeded.

Dike fill was specified to be placed and compacted to a minimum of 95% of the maximum dry density as determined by ASTM D698. Four hundred and twenty field density tests conducted specifically on Primary Ash Pond dike materials during construction reported densities ranging from a minimum of 92 percent up to 110 percent, with an average of 98 percent.

The exterior dikes for the Primary Ash Pond were constructed approximately 4 to 39 feet above the existing grade. The crest of the dike is reportedly 15 feet wide and includes a gravel perimeter access road. Typical cross-sections depicting the Primary Ash Pond construction configuration are provided on Figure 2-5.

The Primary Ash Pond and Secondary Pond are separated by a dike that has side slopes of approximately 3.0 horizontal to 1.0 vertical and a height of approximately 40 feet above natural grade. This dike also has a crest that is approximately 15 feet wide and contains a gravel road (see Figure 2-5). An outlet structure intersects the divider dike to allow the overflow of water from the Primary Ash Pond to the Secondary Pond. The structure inlet is located in the Primary Ash Pond and consists of a 7-feet wide by 9.5-feet long concrete structure configured with

stoplogs supported by a 12-feet wide by 14.5 feet long foundation. The inlet structure is accessed by a walkway extending from the shared Primary Ash Pond and Secondary Pond dike into the Primary Ash Pond. The concrete inlet structure is intersected by a 30-inch diameter corrugated metal pipe (CMP) with 7-feet by 7-feet steel seepage collars at 28 feet on center. The CMP has an inlet elevation of El. 106 and an outlet elevation of El. 105 (CDM, March 2011).

Bottom ash and boiler slag are sluiced along the south embankment into the Primary Ash Pond via one 12-inch-diameter high density polyethylene (HDPE) pipe and one 12-inch-diameter carbon steel pipe (CSP). The ash slurry is sluiced onto a screen processor to separate fine and coarse material. Demineralizer effluent is sluiced into the Primary Ash Pond along the southeast embankment through an 8-inch-diameter HDPE pipe.

A boiler area sump in the plant collects other liquid waste and sluices it through a 20-inch diameter Class 200 polyvinyl chloride (PVC) pipe along the Primary Ash Pond west embankment adjacent to the groin with the evaporation pond. A valve in the pipeline also allows the boiler area sump water to be discharged directly into the evaporation pond. Flow to the Primary Ash Pond from the boiler area sump is regulated depending on water levels and weather conditions. The pipeline can also be used as a clean water decanting pipe.

In 2012, Coleto Creek Power, LP contracted AECOM Technical Services, Inc. (AECOM) to prepare a hydraulic and geotechnical stability analysis of the Primary Ash Pond (AECOM, March 2012). Under that study, AECOM conducted field and laboratory testing to evaluate the current geotechnical stability of the Primary Ash Pond dike system. According to the report, AECOM found that "the ash pond has adequate factor of safety under the steady-state, normal operating, maximum operating, rapid drawdown, and seismic conditions modeled."

2.7 Primary Ash Pond Drawings

Figures 2-4 and 2-5A, -B, and -C provide dimensional drawings of the Primary Ash Pond as required in §257.73(c)(1)(vii).

2.8 Primary Ash Pond Instrumentation

The Coleto Creek Primary Ash Pond water levels are observed on a daily basis during site inspections using the pond staff gauge located on the inlet structure. The staff gauge has a maximum reading of +140 feet which approximately corresponds to the top of the dike embankment. Based on an on-site topographic survey conducted by Naismith Marine Services of Corpus Christi, Texas (Naismith) in July 2016, the elevation 140 reading on the staff gauge corresponds to approximate elevation 140.4 feet NAVD88. Furthermore, the plant datum (referred to as MSL) was surveyed and determined by Naismith to be equal to NAVD88. Water levels are normally maintained at an elevation of El. 136 feet (NAVD88) or lower. There is no other instrumentation used to monitor the Primary Ash Pond.

2.9 Primary Ash Pond Area-Capacity Curves

Figure 2-6 provides the area-capacity curves for the Primary Ash Pond.

2.10 Primary Ash Pond Spillway and Diversion Design Features

The Primary Ash Pond was not constructed with a conventional spillway. Water from the Primary Ash Pond is primarily lost through evaporation. Excess water that needs to be removed to maintain proper freeboard distances can either be discharged through the Secondary Pond and subsequently through Outfall 003 in accordance with the plant's TPDES permit or recirculated back to the plant for re-use.

Pond water levels are maintained to accommodate safe plant operations and are primarily dependent on plant water and ash loading rates as no storm water runoff from the surrounding area (other than run-off from the dike crest) enters the pond. Water levels are monitored daily and the amount discharged to the outfall or recirculated to the plant can be adjusted to accommodate for expected rain events or drought conditions. The Primary Ash Pond is currently

operated with more than four feet of freeboard to allow removal of bottom ash and fly ash for offsite beneficial reuse.

2.11 Primary Ash Pond Surveillance, Maintenance, and Repair Provisions

Formal and informal inspections of the pond are conducted by qualified facility personnel for the purpose of ensuring proper and safe operation in accordance with the provisions defined in §257.83(a). Weekly inspections include observation of the static pond water level, vegetation control, and structural integrity evaluations of dike embankments and any noted issues are addressed as necessary. In addition to the weekly observational inspections performed by site personnel, formal inspections of the pond conditions are conducted by an independent consulting firm annually in accordance with §257.83(b).

2.12 Primary Ash Pond Structural Stability History

There is no record or knowledge of structural instability of the Primary Ash Pond. The pond dikes have been maintained to minimize the potential for structural failure.

3.0 INITIAL POTENTIAL HAZARD CLASS ASSESSMENT

According to 40 *CFR* §257.73(a)(2), the owner and operator of a CCR surface impoundment must assign a hazard potential classification to each operating unit. For the purposes of the rule, hazard potential classification means "the possible adverse incremental consequences that result from the release of water or stored contents due to failure of the diked CCR surface impoundment or mis-operation of the diked CCR surface impoundment or its appurtenances." The impoundment must be classified as high hazard, significant hazard, or low hazard. Each hazard potential classification is defined as follows (§257.53):

- 1) High hazard potential CCR surface impoundment means a diked surface impoundment where failure or mis-operation will probably cause loss of human life.
- 2) Low hazard potential CCR surface impoundment means a diked surface impoundment where failure or mis-operation results in no probable loss of human life and low economic and/or environmental losses. Losses are principally limited to the surface impoundment owner's property.
- 3) Significant hazard potential CCR surface impoundment means a diked surface impoundment where failure or mis-operation results in no probable loss of human life, but can cause economic loss, environmental damage, disruption of lifeline facilities, or impact other concerns.

In 2010 the United States Environmental Protection Agency (USEPA) contracted CDM to perform a site assessment of the Primary Ash Pond at the Coleto Creek Power Station. As part of the assessment, CDM assigned the pond with a Low Hazard classification (CDM, 2011).

Subsequent to the CDM report findings, Coleto Creek Power, LP contracted AECOM to perform geotechnical studies to further evaluate the structural stability of the CCR surface impoundments. AECOM implemented a subsurface investigation and performed a geotechnical stability evaluation, a liquefaction assessment, and hydraulic analysis. AECOM also performed an independent hazard assessment of the Primary Ash Pond and Secondary Pond. The results of that assessment supported the initial CDM classification of Low Hazard.

3.1 Dam Breach Analysis

The Coleto Creek Primary Ash Pond is the only CCR-regulated surface impoundment at the Coleto Creek Power Station and is therefore subject to the Hazard Classification Assessment under the CCR rules. Because the Primary Ash Pond is hydraulically connected to, and is separated by a dike system from, the Secondary Pond, it is necessary to include the Secondary Pond when evaluating potential failure scenarios as noted below. Although the Secondary Pond is not a CCR-regulated unit, it is subject to operational and safety standards established by the Texas Commission on Environmental Quality (TCEQ) in its Dam Safety rules (30 TAC Part 1 Chapter 299).

Bullock, Bennett & Associates (BBA) performed a simplified dam breach analysis of the Primary Ash Pond and Secondary Pond to support the loss of life, and environmental and economic impact analyses. The Primary Ash Pond and Secondary Pond combined, as indicated by the most recent survey conducted in July 2016, have a maximum storage capacity of approximately 4,000 acre-ft and a maximum levee height for the Secondary Pond of approximately 39 feet above adjacent lake level of 101 feet MSL. Construction was completed in 1978 and the effective fluid storage capacity in the Primary Ash Pond has diminished with the placement of CCR over time. According to topography and bathymetric survey data collected in July 2016, the fluid capacity in the Primary Ash Pond has been reduced to approximately 1,720 acre-ft at the maximum dike crest height.

The Primary Ash Pond and Secondary Pond are located next to the Coleto Creek Reservoir which was constructed to serve as a cooling pond for the Power Station. The reservoir is divided into a "hot" side and a "cool" side. The ponds are located immediately adjacent to the hot side of the lake. The hot side of the lake is created from Sulphur Creek behind Dike No. 1 (Dike No. 1 Lake) which is connected to Turkey Creek behind Dike No. 2 (Dike No. 2 Lake) by a secondary flume. Water from these lakes then flows into Main Lake which is the cool side. Decant water from the Secondary Pond can be combined with other plant water then routed through TCEQ-approved Outfall 003 to the hot side of the lake. Cool water is pumped into the Power Station from the Main Lake.

GBRA provided area-capacity tables for the Coleto Creek Reservoir and Dike Lake Nos. 1 and 2. These tables are presented as Attachments 3-1, 3-2, and 3-3 in Appendix E. Dike No. 1

Lake consists of approximately 164 acres at the normal operating elevation of 101 feet MSL. Dike No. 2 Lake is approximately 429 acres at the normal operating elevation of 101 feet MSL. The two Dike Lakes are separated from Coleto Creek Reservoir by splitter dikes with an approximate elevation of 102 feet MSL (GBRA, 2016). Coleto Creek Reservoir covers an area of approximately 2,652 acres at a normal operating elevation of 98 feet MSL (GBRA, 2016). Coleto Creek Power, LP reportedly controls the lake up to an elevation of 104 feet MSL. An area map showing the relative locations of the Primary Ash Pond, Secondary Pond, Dike Lakes, and Coleto Creek Reservoir is presented in the attachments as Figure 1-1.

For the purposes of this evaluation, a conservatively worst-case dam breach scenario was developed assuming that the breach was due to overtopping of the surface impoundment levees and that the breach occurs in the shared Primary Ash Pond and Secondary Pond dike and subsequently in the Secondary Pond dike adjacent to Coleto Creek Reservoir, releasing the entire water contents of both ponds. This scenario allows for the greatest quantity of pond decant water to be released.

An evaluation of potential water and residual solids flow paths was performed to support the loss of life, environmental, and economic evaluations. Surface elevation cross-sections assembled from Google EarthTM profiles of the areas adjacent to the pond dikes were reviewed to estimate the potential flow path of the released water and solids. As shown in Figure 1-1A, the wet side of the ponds are bound by the Evaporation Pond followed by Dike No. 1 lake on the north-northwest, Dike No. 1 lake on the northeast corner, and the primary plant discharge flume on the east. The surface elevation of the terrain that bounds the east side of the discharge flume appears to extend to approximately elevation 132 feet. The flume channel, therefore, appears to be located within a larger basin bounded to the west by the Primary Ash Pond and Secondary Pond dikes (approximate elevation 140 feet) and to the east by land mass (approximate elevation 132 feet). The distance between the dike on the west side of the basin and land mass high points on the east side appears to be approximately 300 feet. The flume channel and basin would route flow from an east-side breach of the dike to the hot side of the lake. Released water and solids, therefore, would initially flow to the hot side of the lake regardless of the location of the breach. From there, water levels would increase one foot (the amount of available freeboard behind Dike No. 1 and Dike No. 2 lakes) then flow into the Main lake. Eventually all water would be released into the Main lake.

Using the tables provided by GBRA, a one-foot increase in the Main Lake elevation requires an additional approximately 2,720 acre-feet of water. The estimated maximum volume of discharge from the Primary Ash Pond and Secondary Pond is approximately 1,720 acre-feet of water, resulting in a water surface elevation change on the reservoir of approximately eight inches. An eight-inch change in water surface elevation is considered to be nominal and would not result in the loss of major infrastructure elements or disrupt lifeline facilities.

3.2 Loss of Life Evaluation

The Primary Ash Pond and Secondary Pond are located apart from the active industrial areas of the Power Station. Two fly-ash silos are located adjacent to the western border of the Primary Ash Pond and loading of trucks for off-site transport and beneficial reuse of the fly ash regularly occurs at this location. These silos and truck loading operations are adjacent to the southwest half of the Primary Ash Pond which is filled with dry and compact CCRs, and any catastrophic failure of the impoundment in this area is highly unlikely. If a failure were to occur, it would probably be located on the "wet" side of the pond, including the northern or eastern dikes for both the Primary Ash Pond and Secondary Pond (see Figure 1-1). There are no regular or active plant operations that occur downstream of those areas where personnel would be expected to be present in the event of a catastrophic failure of the dike. There are no residences or other off-site manned operations immediately downstream of the ponds. As noted in Section 3.1 the Dike 1, Dike 2, and Main Lakes would absorb the released water and raise reservoir levels a nominal amount (less than a foot). Loss of life in the event of a catastrophic failure of the surface impoundment dike system, therefore, is considered to be improbable.

3.3 Economic and/or Environmental Loss Evaluation

Additional consideration was given to the impacts of the water quality from a large volume discharge from Primary Ash Pond and Secondary Pond into the Coleto Creek Reservoir. Using the volume ratio of pond water (approximately 1,720 acre-feet) that could potentially be discharged into the Coleto Creek Reservoir to the existing volume of water in the reservoir (approx. 31,280 acre-feet at elevation 98 feet msl), the impacts to the water quality are minimal (31,280 acre-feet/1,720 acre-feet = ~18 dilution factor of analytes in the Primary Ash Pond water). Discharge of Secondary Pond water is currently allowed to the Coleto Creek Reservoir under Permit No. WQ002159000 (TCEQ, 2010).

Currently, the coal combustion by-products are sluiced into the Primary Ash Pond. The assumed ratio of solids-to-water is approximated at 20%-to-80%. The solids settle out of solution and the water decants to the surface. As the solids settle out of solution, they consolidate. Additionally, based on field observations the ash "sets up" similar to cement, becoming very hard and massive. The expected flow of any unconsolidated solids from the Primary Ash Pond is believed to be minimal.

Additionally, approximately 90% of the approximate 90,000 cubic yards of ash produced annually is currently being sold and recycled rather than disposed in the Primary Ash Pond (Coleto Creek Power, 2015). However, for the sake of conservatism, it is assumed that a volume of ash equivalent to six months of production (assuming no recycling) is disposed in the Primary Ash Pond and may not be consolidated, and may flow should a breach occur. Under these assumptions, there is potential for approximately 45,000 cubic yards (approximately 28 acre-feet) of ash flow. The ash volume would be in solution with the decant water, displacing an equal volume of the decant water. This ash would be expected to be contained within the hot side of the lake. Impacts would therefore be primarily limited to the owner's property.

3.4 Hazard Potential Classification

Based on a review of previous studies, analytical data, ash production/recycling volumes, available impoundment capacities, available lake capacities, observed current conditions at the site, assumptions, and other factors, the Coleto Creek Primary Ash Pond is classified as a Low Hazard Potential impoundment.

4.0 INITIAL STRUCTURAL STABILITY ASSESSMENT

According to §257.73(d), the owner or operator of the CCR surface impoundment "must conduct initial and periodic structural stability assessments and document whether the design, construction, operation, and maintenance of the CCR unit is consistent with recognized and generally accepted good engineering practices for the maximum volume of CCR and CCR wastewater which can be impounded therein."

Stable foundations and abutments. As noted in Section 2.5, the Primary Ash Pond was constructed on a foundation of in-place cohesive soils whose geotechnical characteristics either met or exceeded Texas Department of Water Resources technical guidelines for the design and construction of waste water ponds that were in force at the time of construction (S&L, December 1978). The dikes are continuous, with no constructed abutments. A review of the geotechnical data collected at the time of construction confirms that the foundation for the pond should continue to be stable over its operational life.

Adequate slope protection to protect against surface erosion, wave action, and adverse effects of sudden drawdown. The Primary Ash Pond dikes were constructed with 2.5 to 3 horizontal to 1 vertical side slope. Outer slopes were seeded for slope protection but interior dike surfaces were not. Vegetation does naturally occur on these surfaces thus assisting in the control of erosion. The interior dike sections in areas impounding water are armored with rock riprap. The dikes are regularly inspected in accordance with \$257.83(a) and (b) and repaired as necessary to maintain their integrity. An engineering site inspection was performed in December 2016 in accordance with the requirements defined in \$257.83(b) which included an evaluation of the surface impoundment dikes. No additional slope protection was deemed to be necessary at that time. (BBA, 2018).

Dikes mechanically compacted to a density sufficient to withstand the range of loading conditions in the CCR unit. The dike system was engineered by S&L and constructed in approximately 1978. As discussed in Section 2.6 – Ash Pond Construction Summary, dike fill material was placed in controlled, mechanically compacted lifts, averaging approximately 98% maximum dry density as determined by ASTM D698. Full time field inspection was performed during construction, with approximately 420 field density tests performed on the dikes.

Vegetated slopes of dikes and surrounding areas not to exceed a height of six inches above the slope of the dike, except for slopes which have an alternate form or forms of slope protection. The slopes of the dikes and surrounding areas are vegetated as required. The slopes are reportedly moved as necessary to comply with height of grass requirements.

A single spillway or a combination of spillways configured as specified in paragraph (d)(1)(v)(A) of the section of the rule. As is common with surface impoundments of this type, the Primary Ash Pond was not constructed with a spillway. The results of the hydraulic analysis completed in support of the Inflow Design Flood Control System evaluation (BBA, January 2018) showed that the Primary Ash Pond, as configured without a spillway and when operated at a maximum storage operating elevation of 136.1 feet NAVD88, has sufficient capacity to manage the design flood. The design flood is designated by rule for a Low Hazard Potential surface impoundment (see Section 3.0) to equal the 100-year rainfall event. It is therefore not necessary for the surface impoundment to have a spillway.

Hydraulic structures underlying the base of the CCR unit or passing through the dike of the CCR unit that maintain structural integrity and are free of significant deterioration, deformation, distortion, bedding deficiencies, sedimentation, and debris which may negatively affect the operation of the hydraulic structure. The weir system and pipe penetrations were visually inspected by a professional engineer in December of 2016 (BBA, 2018). There were no observations of conditions that would negatively impact operation of the structures. The inspection was limited to visual observations during a site visit, and did not include, for instance, use of a remote video camera in the outlet structure pipe for inspection of internal conditions.

For CCR units with downstream slopes which can be inundated by the pool of an adjacent water body, such as a river, stream or lake, downstream slopes that maintain structural stability during low pool of the adjacent water body or sudden drawdown of the adjacent water body. The dike that separates the Primary Ash Pond from the Secondary Pond was evaluated for stability in the event of rapid drawdown of the Secondary Pond, as further discussed in Section 5.0 Initial Safety Factor Assessments. As noted in the Initial Safety Factor Assessment, the modeled slope stability results indicate this divider dike exceeds the required safety factors under the max surcharge pool/rapid drawdown scenario.

No structural stability deficiencies were identified in this initial Structural Stability Assessment that would require corrective measures.

5.0 INITIAL SAFETY FACTOR ASSESSMENTS

§257.63(e) requires that owners of existing and newly constructed CCR surface impoundments conduct initial and periodic safety factor assessments. The purpose of the safety factor assessment is to document that the as-constructed CCR surface impoundment configuration either meets or exceeds regulatory safety factor criteria under long-term, maximum storage pool loading conditions, and maximum surcharge pool loading conditions. In addition, the liquefaction and seismic factor of safety must be estimated.

The rule requires that the safety factor evaluation be performed across the critical cross section of the impoundment dikes. For the purposes of this initial assessment, previous data collected as part of historical site assessments as noted in Section 4.0 were evaluated to determine whether it represented the critical cross section of the pond dikes that would be most susceptible to failure. The critical cross sections for the Primary Ash Pond, as shown in Figure 2-5A, are in the areas of the pond that still contain water, are generally representative of the tallest sections of dikes and contain representative side slopes, and are where the highest potential impacts would be expected were a dike breach to occur.

Geotechnical sampling and analysis of as-constructed dike materials has been conducted during three different events. The first was performed by S&L during and after construction of the pond in 1978. Subsequent studies were performed in 1981 by Underground Resource Management, Inc. (URM) (URM, July 29, 1981) and in 2012 by AECOM Technical Services, Inc. (AECOM, March 2012).

BBA reviewed the previous site geotechnical investigation data gathered by S&L, URM and AECOM used in previously conducted stability analyses of the dikes and the data appears sufficient to provide a reliable estimation of current conditions, therefore no further geotechnical testing was required for the current analysis. Coleto Creek Power provided all previous investigation data to BBA for use in evaluation and preparation of an updated structural stability analysis. The most recent stability analysis, conducted by AECOM in 2012, summarizes previous evaluations by others. A brief summary of previous geotechnical investigations is provided below.

S&L completed approximately 80 soil borings to document the subsurface soils in and around the Primary Ash Pond. All of the borings were reportedly completed prior to construction of the ponds, in support of the pond design. Following commissioning of Unit 1 and filling of the ponds to normal operating levels, seepage was observed west and adjacent to the Recirculating Pump House. URM was contracted to investigate the seeps and their potential impact to dike stability. URM completed a geotechnical investigation of the pond dikes near the seep location, and assessment of both the dike embankment stability and groundwater quality indicated no detrimental effects due to the seep at that time and that, based on site geotechnical investigations, laboratory data analysis, and slope stability modeling of the dike, short and long-term stability of the embankments in the study area were considered satisfactory (URM, July 29, 1981).

AECOM, upon reviewing previous geotechnical investigations from S&L and URM, completed a supplemental geotechnical investigation program to evaluate stability of the dike system in 2012. While their review of previous data found the data to be acceptable for use in evaluation of dike stability of the ponds, they also identified critical areas of interest within the dike system for further evaluation, and implemented a geotechnical investigation of these critical areas (cross sections A and B as shown in Figure 2-5A of the attachments). BBA agrees that these locations are the critical areas to evaluate for stability, given cross section A is near a location of historically observed seepage at the outside toe of the Primary Ash Pond dike and cross section B is located along the splitter dike that separates the Primary Ash Pond and Secondary Pond. It should be noted that due to recent reduction in water surface operational levels at the Primary Ash Pond, the historically observed seepage in the area of cross section A has recently been observed to be dry.

AECOM field data gathering included construction of 8 geotechnical borings extending from depths ranging from 29.5 to 121.5 feet below ground surface (bgs). Five borings were completed from the top of the dikes and three borings were located along the exterior toe of dike. Laboratory testing included water content, dry unit weight, calibrated penetrometer, grain-size distribution, triaxial shear testing and direct shear testing. AECOM contracted with Subsurface Exploration Services, LLC of Green Bay, Wisconsin to complete the field work, and AECOM field staff observed the exploration work, assisted with collection of soil samples, and completed field boring logs. Laboratory testing was conducted by AECOM geotechnical laboratory technicians. AECOM geotechnical laboratories are reportedly certified by multiple state and

federal agencies to complete geotechnical testing in accordance with American Society for Testing and Materials (ASTM), United States Army Corp of Engineers (USACE), and State Department of Transportation approved methods and standards (AECOM, 2012).

BBA reviewed the data available from the S&L, URM, and the supplemental data gathered by AECOM including geotechnical data, cross sections, and methodology used by AECOM for modeling slope stability. The data and methods are suitable for evaluation of slope stability of the critical cross section locations. The geotechnical investigation data from the AECOM study, including soil bore logs and geotechnical laboratory data is included in Appendices A and B, respectively, of this report.

BBA contracted Naismith to complete an existing conditions topographic survey of these critical cross section areas, as well as topography of the entire perimeter dike system and bathymetry of the pond interiors. Using the 2016 existing conditions survey data, and geotechnical data obtained from the previous studies (including similar lithology as indicated in the AECOM study for the critical cross sections), BBA graphically reconstructed the cross section locations A and B for completion of further analysis. Upon review of all data and methodologies used by AECOM in analysis of the critical cross section locations of the dike systems, BBA completed a similar analysis. BBA compared the 2016 as-built topographic survey cross sections at cross section locations A and B to the design sections. Based on this review it appeared the as-built sections generally were slightly overbuilt when compared to the design sections, and contained slightly gentler slopes. Based on comparison of design versus as-built sections at each location it was determined that the design sections were likely worse case than the as-built sections in regards to analysis for slope stability, therefore only the design sections were evaluated.

Based on review of the AECOM bore logs and geotechnical laboratory test data, BBA generally agrees with the lithology and soil engineering strength properties used in the AECOM stability analysis. However, BBA's evaluation of field data and laboratory indices testing did result in minor changes in assumed soil properties – the reduction of the effective shear strength of caliche from 36 degrees to 34 degrees for cross section B and the increase in unit weight from 120 pounds per cubic foot (pcf) to 130 pcf. BBA evaluated stability with both sets of data and observed that these changes do not alter the overall safety factor for these sections, however, the revised data set appear more appropriate based on review of field and indices test data and are

therefore reported. Review of the data indicates that generally the AECOM engineering strength properties used in their analysis were conservative and representative of the field and laboratory data gathered.

Similar to the AECOM stability evaluation, BBA evaluated the dikes using two sets of time-dependent strength parameters, effective stress and total stress. Effective stress analysis was used to model drained, long-term, steady-state loading conditions where excess pore pressures have had time to dissipate. This would be the normal steady state operating conditions (maximum storage pool) of the pond. Total stress analysis was used to model undrained, short-term loading conditions such as maximum surcharge pool, rapid drawdown, and seismic events, where excess pore water pressure could develop in fine grained silts clays and not have had time to dissipate. The rapid drawdown case is representative of the conditions that would occur immediately after a significant flood event, or if the Secondary Pond was rapidly drained.

The seismic conditions analyze the effect an earthquake would have on the stability of the dike. BBA selected a maximum probable earthquake for the Coleto Creek Power Station based on the 2014 United States Geological Survey National Seismic Hazard Maps found at (http://earthquake.usgs.gov/hazards/products/conterminous/2014/2014pga2pct.pdf). The maximum probable earthquake has a peak ground acceleration of 0.03 g with a 2 percent Probability of Exceedance in 50 years.

Table 5-1 summarizes the effective and total stress soil strength parameters used for each soil layer in the analysis:

TABLE 5-1
Soil Strength Parameters used in Geotechnical Stability Analysis
(color shading as shown in cross sections)

Cross Section A-A'

Soil Description	Unit Weight	Effective Stress Strength Parameters		Total Stress Strength Parameters	
1	(pcf)	c' (psf)	Ø'	c (psf)	Ø
Clayey Sand Fill Material (SC)	130	150	29	3,000	0
Natural Silty Clay or Clayey Sand (CL, SC, CL-Caliche)	130	150	27	4,000	0
Natural Sands (SM, SP, SC)	130	0	36	0	36

Cross Section B-B'

Soil Description	Unit Weight	Effective Stress Strength Parameters		Total Stress Strength Parameters	
	(pcf)	c' (psf)	ø,	c (psf)	Ø
Clayey Sand Fill Material (SC)	130	150	29	3,000	0
Caliche (SC)	135	250	34	250	0
Medium Dense to Dense Sands (SP)	132	0	36	0	36
Dense to Extremely Dense Sands (SP, SC, SM, SP-SM)	133	0	38	0	38
Very Stiff to Hard Silty Clay (CL, CL-ML, CH)	128	0	29	3,250	0

Based on field observations, the ash located within the Primary Ash Pond tends to set up, much like cement, into a hard, blocky mass of material. However, as was assumed in the AECOM evaluation, for conservative modeling purposes the interior material was considered to be water, with no structural strength that would add a stabilizing force.

Four model conditions were evaluated at each cross section location, as deemed applicable, including: maximum storage pool (the highest normal operating level) and maximum surcharge pool (level reached during inundation from design storm) conditions, rapid drawdown, and the seismic condition. The normal operating water level, based on the Hydrologic and Hydraulic Capacity Requirements evaluation completed by BBA (BBA, January 2018) is 136.1 (NAVD88).

The water level projected in event of a design storm (the 100 year, 24-hour storm) is 138.0 (NAVD88). The lowest top of dike elevation observed in the 2016 survey was 139.7 (NAVD88).

Cross section A, located in the observed historical seep location near the southeast corner of the Primary Ash Pond, was assumed to have a water table elevation at the ground surface along the exterior toe of slope, as observed in the field and as documented in the AECOM stability analysis as well as the BBA inspection conducted in December 2016. Cross section B, located along the separator dike between the Primary Ash Pond and Secondary Pond, was modeled with the maximum storage and maximum surcharge pool elevations. Cross section B was also evaluated for the rapid draw down (RDD) condition. It is conservatively assumed the phreatic surface at cross section A exits the exterior dike surface at approximately 1/3 the height of the dike (although the only field observations of wet soil occurred at the toe of slope, where the seep locations are located). The phreatic surface for cross section B is at the same elevation as the assumed pond water levels.

Dikes should be designed with appropriate safety factors. Required safety factors per §257.73(e)(1)(i) through (e)(1)(iv) for critical embankment sections are as follows:

Table 5-2Required Factors of Safety

Condition	Required Factor of Safety
Long-Term, Maximum Storage Pool Loading Static Factor of Safety	1.50
Maximum Surcharge Pool Loading Static Factor of Safety	1.40
Seismic Factor of Safety	1.00
Liquefaction Factor of Safety	1.20

BBA used the 2D limit equilibrium computer program SLIDE 7.0 by Rocscience to complete the slope stability analysis for the critical cross sections. A combination of the Simplified Bishop and the Morgenstern-Price method of slices, for both circular and block-type failures, was used to analyze the stability of the slopes. Eighteen stability cases were evaluated for the critical cross sections as summarized in Table 5-3, and the lowest factor of safety generated for each case is reported:

Table 5-3 Slope Stability Analysis Summary

Cross	Conditions Conditions	Effective Stress Analysis Safety Factor		Total Stress Analysis Safety Factor	
Section		Block	Circular	Block	Circular
A-A'	Max Storage Pool/Static	1.8 (1)	1.9 (2)	4.9 (3)	5.5 (4)
A-A'	Max Surcharge Pool/Static	1.7 (5)	1.8 (6)	4.9 (7)	5.5 (8)
A-A'	Max Storage Pool /Seismic	NA	NA	4.3 (9)	4.8 (10)
В-В'	Max Storage Pool /Static	2.8 (11)	2.8 (12)	3.7 (13)	5.1 (14)
B-B'	Max Surcharge Pool, Rapid Drawdown	NA	NA	2.0 (15)	2.1 (16)
B-B'	Max Storage Pool/Seismic	NA	NA	3.0 (17)	4.1 (18)

Note: (#) = Case Number (referenced on model output data in Appendix C).

Cross sections, bore logs, laboratory data, and SLIDE 7.0 stability model output data are included in Figure 2-5A and Appendices A, B, & C, respectively of this report.

As shown in Table 5-3, eighteen stability cases were modeled and all cases meet or exceed required factors of safety.

5.1 Liquefaction Assessment

BBA utilized the liquefaction assessment process outlined in the U.S. EPA guidance document titled RCRA Subtitle D (258) Seismic Design Guidance for Municipal Solid Waste Landfill Facilities, EPA/600/R-95/051, April 1995, published by the Office of Research and Development and other relevant source documents to perform this liquefaction factor of safety evaluation. As identified in those documents, the liquefaction assessment process begins by screening the subject site for its liquefaction potential using the following criteria.

- Geologic age and origin. If a soil layer is a fluvial, lacustrine or aeolian deposit of Holocene age, a greater potential for liquefaction exists than for till, residual deposits, or older deposits.
- Fines content and plasticity index. Liquefaction potential in a soil layer increases with decreasing fines content and plasticity of the soil. Cohesionless soils having less than 15 percent (by weight) of particles smaller than 0.005 mm, a liquid limit less than 35

percent, and an in situ water content greater than 0.9 times the liquid limit may be susceptible to liquefaction.

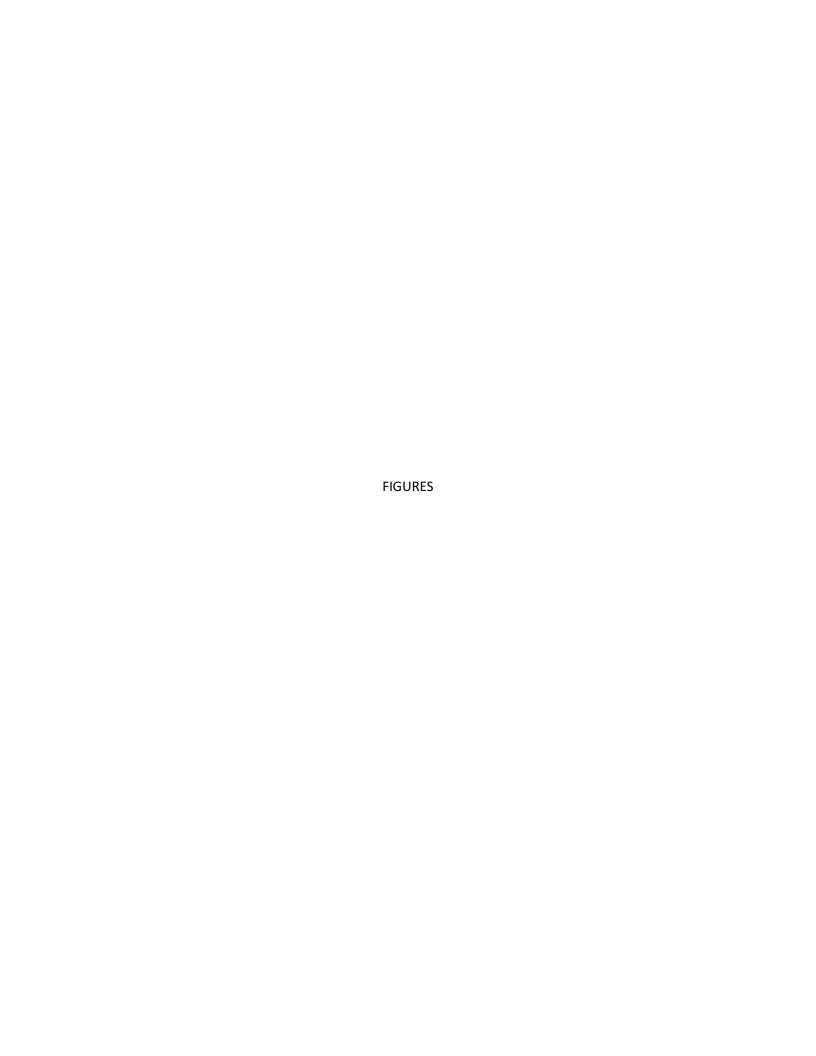
- Saturation. Although low water content soils have been reported to liquefy, at least 80 to 85 percent saturation is generally deemed to be a necessary condition for soil liquefaction.
- Depth below ground surface. If a soil layer is within 50 feet of the ground surface, it is more likely to liquefy than deeper layers.
- Soil Penetration Resistance. Soil layers with a normalized SPT blowcount $[(N_1)_{60}]$ less than 22 have been known to liquefy. Other sources suggest an SPT value of $[(N_1)_{60}]$ less than 30 as the threshold to use for suspecting liquefaction potential.

If three or more of the above criteria indicate that liquefaction is not likely, the potential for liquefaction is considered to be negligible. Otherwise, further evaluation of the liquefaction potential at a facility is required. The soils at the Coleto Creek Power facility generally meet at least three of the specified screening criteria and their liquefaction potential is unlikely. However, there are exceptions such as certain layers that are described in the soil borings logs as SP, or sandy soils, which would by definition have a low fines content. In addition, some liquid limits are below 35 percent. Therefore, further evaluation of the soil data has been completed, and factors of safety against liquefaction calculated for each critical layer, as further described below.

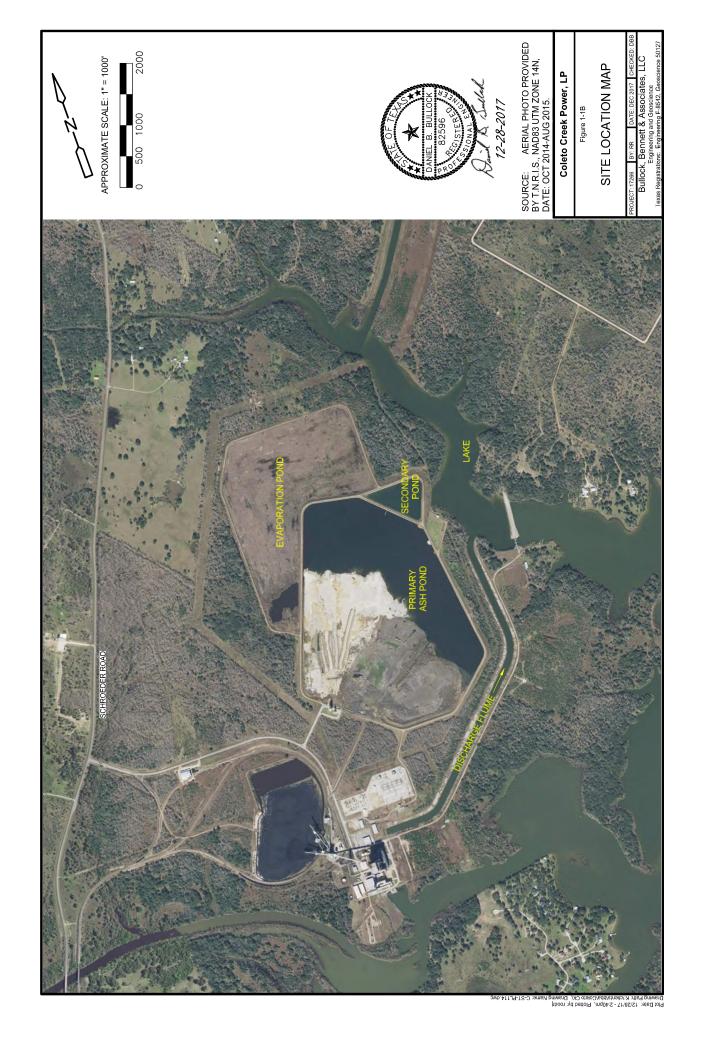
A review of existing data regarding site conditions, soil stratigraphy, soil properties, and potential critical layers as well as the methods used to develop that data indicate that the findings presented in the AECOM report (AECOM, 2012) are sufficient for use in this assessment. As noted in previous sections of this report, AECOM drilled eight borings through critical areas of the site to depths ranging from approximately 30 to 120 feet bgs. Standard penetrometer (SPT) blows per foot, plastic limit, water content, and liquid limit data were collected at two to five foot intervals. In addition, samples were collected and sent to an off-site laboratory for analyses of general geotechnical properties. Copies of the boring logs and laboratory data used in this assessment are provided in Appendices A and B.

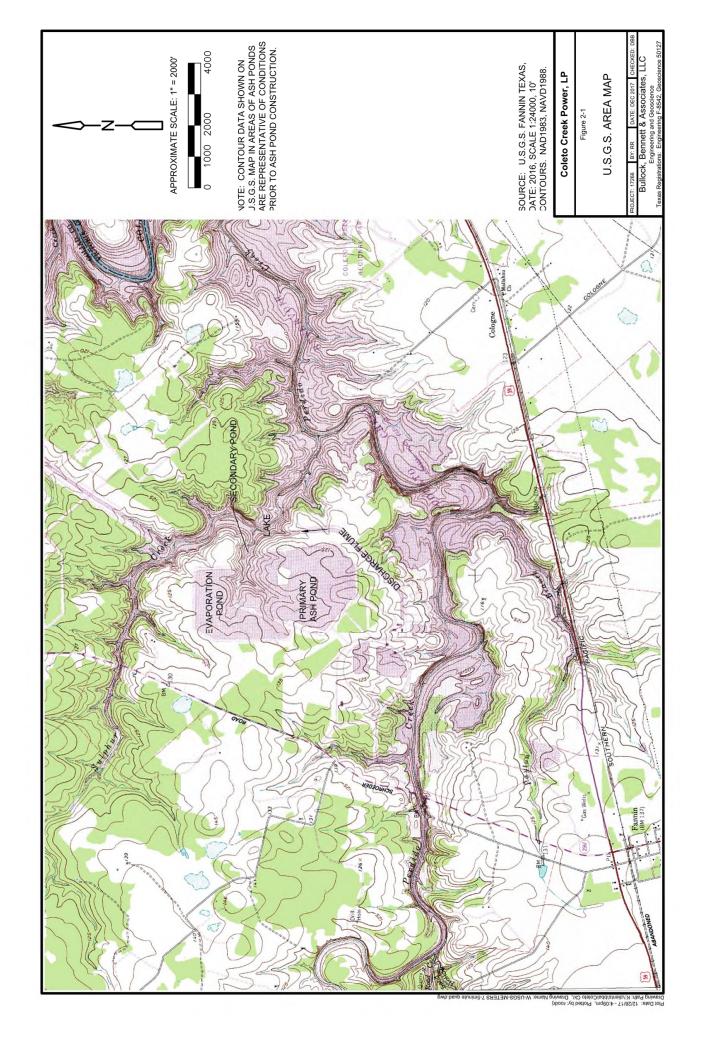
When available, site specific information such as SPT blow count and percent fines content (soils passing the #200 sieve) was used in the evaluation of liquefaction potential. For strata with no site specific data, conservative estimates were used based on industry accepted references and engineering judgement. For example, earthquake potential maps and tables presented in the

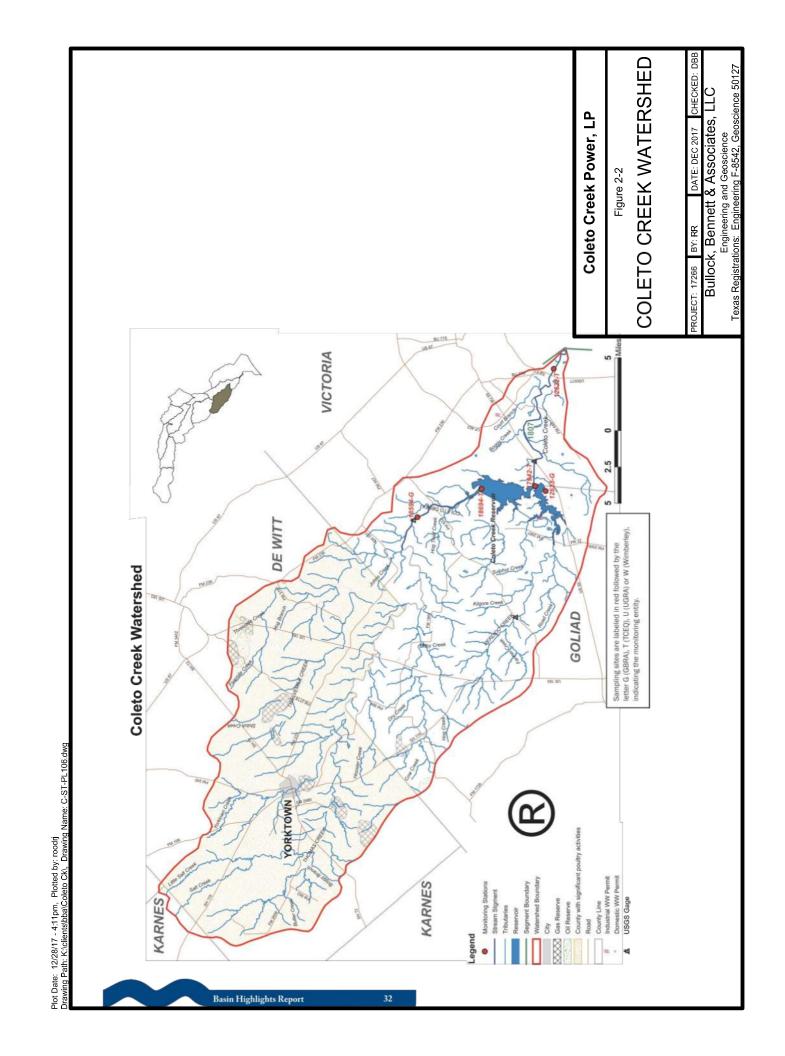
USEPA guidance document were used to estimate the worst-case earthquake magnitude and associated maximum ground acceleration. USGS references for low to mid-ranges of fines content for the reported soil types were used when no laboratory data existed.

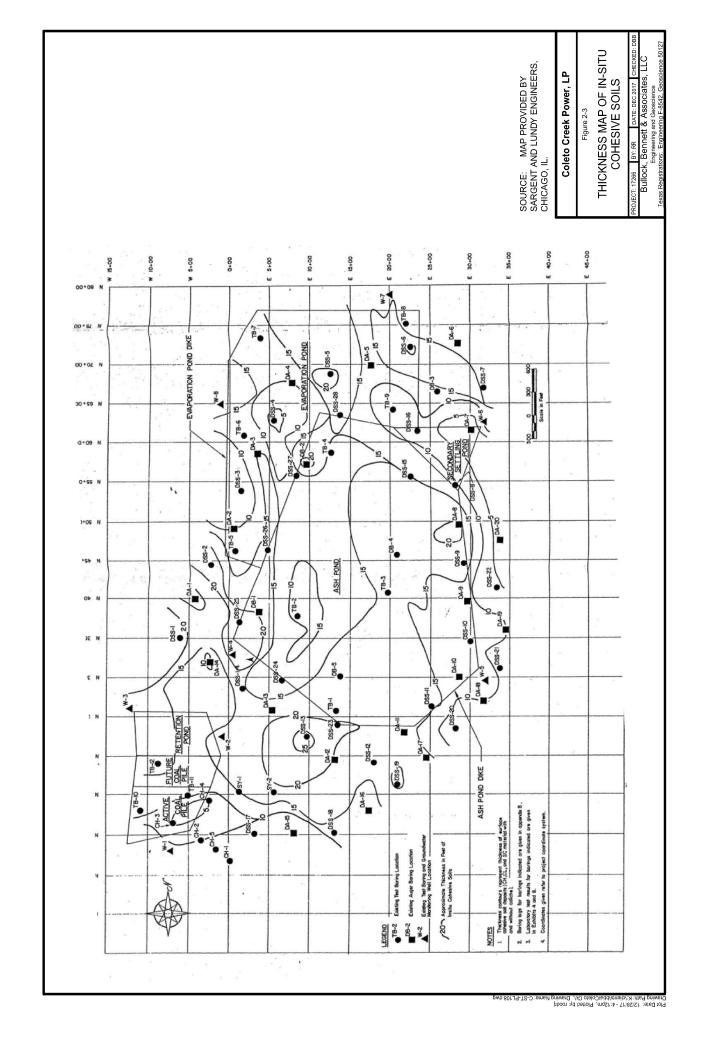

A complete discussion of the methodology used and the calculation spreadsheets for each strata identified in the eight boring logs are presented in Appendix D. The findings of the liquefaction assessment indicate that the factor of safety is well above the 1.2 required. This finding is expected given the generally high fines content of most soil strata, the low water content, and low ground acceleration that would be observed in the unlikely event that an earthquake was to occur in this area.

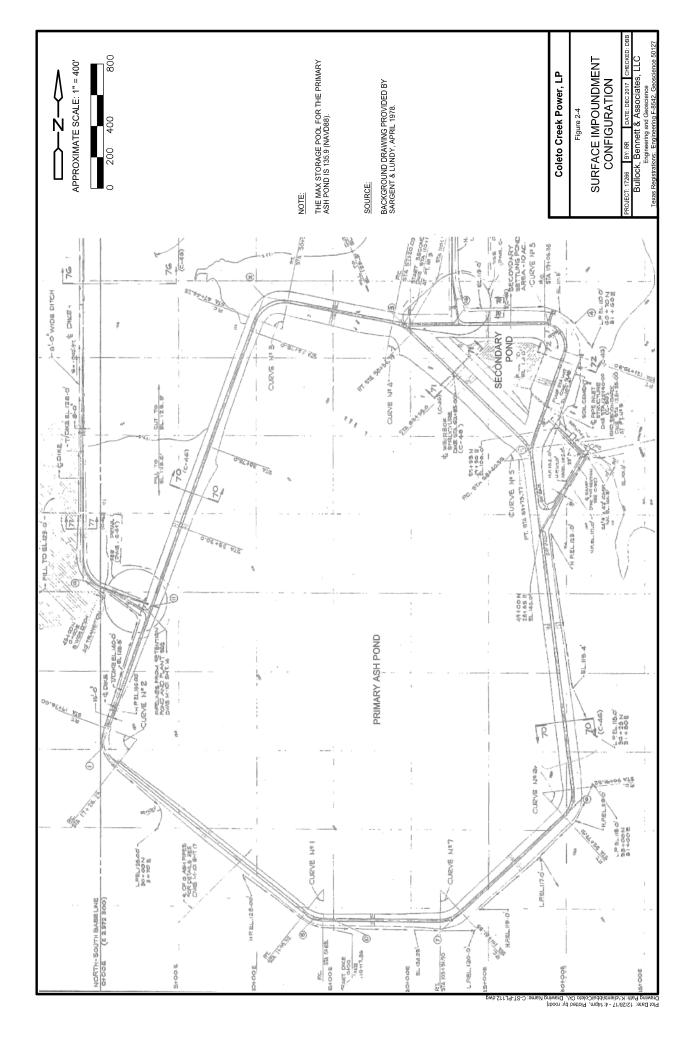
5.2 Initial Safety Factor Assessment Summary

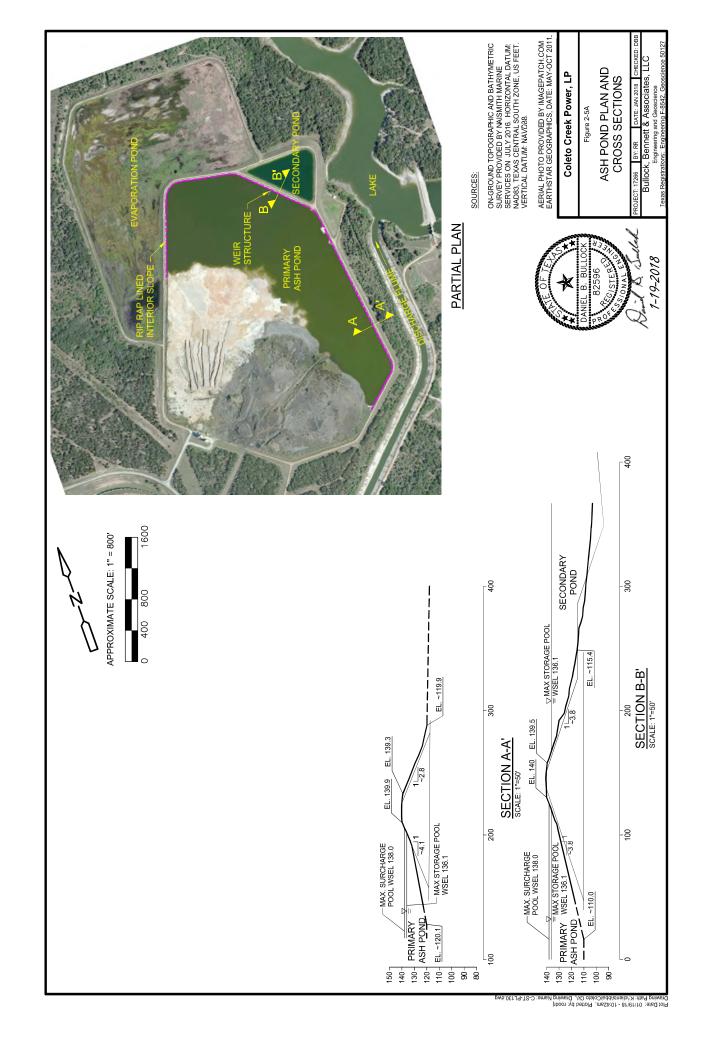

In accordance with §257.73, Structural Integrity Criteria for Existing CCR Surface Impoundments, the critical cross sections of the Primary Ash Pond at the Coleto Creek facility have been evaluated for slope stability under appropriate loading conditions, including steady-state seepage, maximum surcharge pool, rapid drawdown, and seismic. In addition, a liquefaction assessment has been completed. Based on review of historic studies, geotechnical data that has been previously gathered, and on stability analysis evaluation, the Primary Ash Pond has an adequate factor of safety for all evaluated loading conditions.

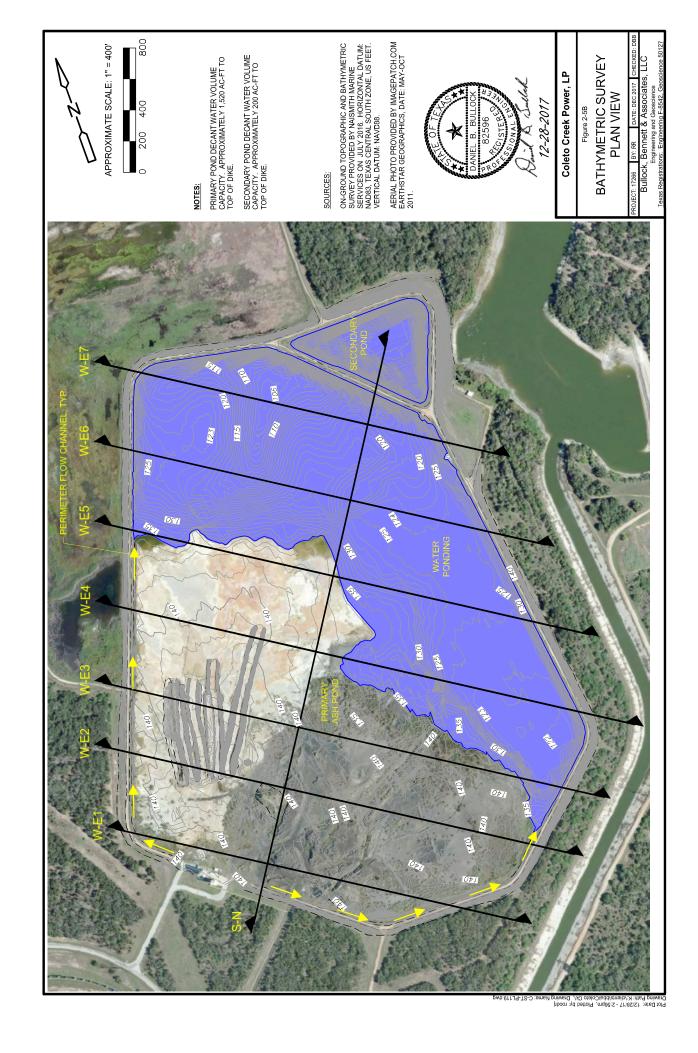

6.0 REFERENCES

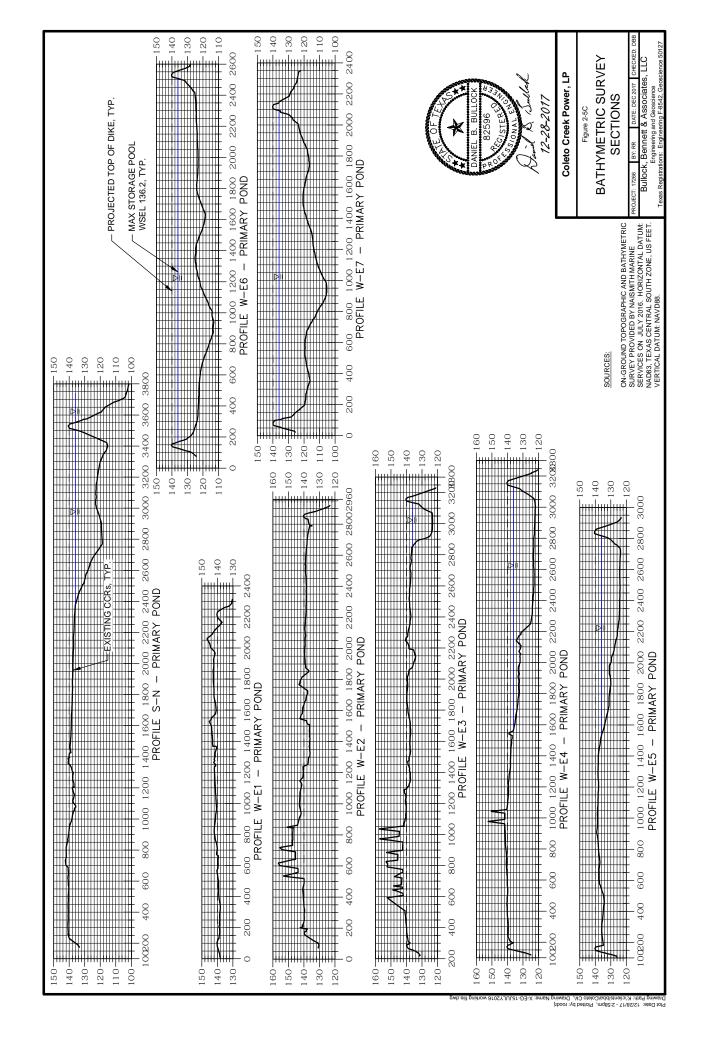

- AECOM. (March 2012). Geotechnical Stability and Hydraulic Analysis of the Coleto Creek Energy Facility Primary and Secondary Ash Ponds. Green Bay, Wisconsin: AECOM Technical Services, Inc.
- BBA. (2018, January 22). Letter to Mr. Robert Stevens from Mr. Dan Bullock. *Coleto-Creek Power September 2016 Primary Ash Pond and Secondary Pond Dike Inspection*. Bullock, Bennett & Associates, LLC.
- BBA. (January 2018). *Initial Inflow Design Flood Control System Report (Original Submittal Date September 2016)*. Bullock, Bennett & Associates.
- CDM. (March 2011). Assessment of Dam Safety of Coal Combustion Surface Impoundments Coleto LP, LLC Coleto Creek Power, LP.
- GBRA. (2013). *Coleto Creek Watershed River Secments, Descriptions and Concerns*. (G.-B. R. Authority, Ed.) Retrieved from Guadalupe-Blanco River Authority Web site: http://www.gbra.org/documents/publications/basinsummary/2013j.pdf
- S&L. (1981). Waste Disposal Plan. Central Southwest Services, Inc. Central Power & Light Company. Coleto Creek Power Station Units 1 and 2. Sargent & Lundy Engineers.
- S&L. (December 1978). Design and Construction Summary for Coal Pile and Wastewater Pond Facilities, Coleto Creek Power Station Unit 1, Report SL-3689. Sargent & Lundy Engineers.
- TCEQ. (January 2007). *Hydrologic and Hydraulic Guidelines for Dams in Texas*. Dam Safety Program, Texas Commission on Environmental Quality.
- URM. (1982). Evaluation and Recommendations Regarding Subsurface Drainage System at Coleto Creek Power Station for Central Power & Light Company. Underground Resource Management, Inc.
- URM. (July 29, 1981). *Investigation of Seepage from Primary and Secondary Settling Ponds at the Coleto Creek Power Station*. Underground Resource Managment, Inc.

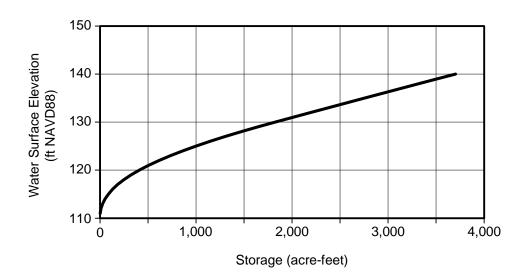


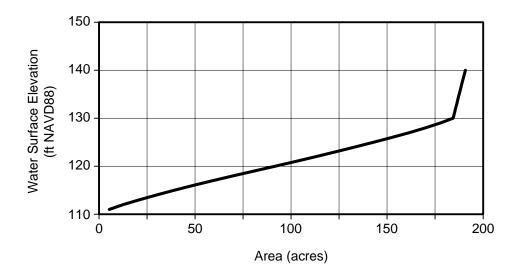












Coleto Creek Power, LP

Figure 2-6

CAPACITY FOR PRIMARY POND

PROJECT: 17266 BY: RR DATE: DEC 2017 CHECKED: DBB

Bullock, Bennett & Associates, LLC
Engineering and Geoscience
Texas Registrations: Engineering F-8542, Geoscience 50127

	_		_	1 -	IENT PR-GDF SUEZ North America	LOG OF BOR	G OF BORING NUMBER B-1-1					
AΞ	C(DΛ	1		ROJECT NAME	ARCHITECT/E	ENGINEE	ER				
				1	oleto Creek Energy Facility Ash Pond							
ITE LOC	CATIO	NC		_				-O_UNCONFINED COMPRESSIVE STRENGTH				
Golia	ad C	Cou	nt	y, I	annin, Texas			TONS/FT. ² 1 2 3 4 5				
DEPTH (FT) ELEVATION (FT)	SAMPLE NO.	SAMPLE TYPE	SAMPLE DISTANCE	RECOVERY	DESCRIPTION OF MATERIAL		UNIT DRY WT. LBS. / Ft.³	PLASTIC WATER LIQUID LIMIT % CONTENT % LIMIT % ———————————————————————————————————				
\leq	SA	SA	SA	쀭	SURFACE ELEVATION: +139.6	(Continued)	Z Ä	 Ø PENETRATION BLOWS/FT. 10 20 30 40 50 				
52.0	26	SS			Grayish brown fine to coarse sand (SP), tr coarse gravel - wet - very dense	ace fine to		\$50				
54.0					현실과 1985년							
56.0	27	SS	П	П			113.5					
58.0			ľ					50				
60.0												
62.0	28	SS	\coprod	Ц	항경							
64.0												
66.0	29	SS	+		65.1 White and gray clayey fine to coarse sand	(SC-caliche) -						
68.0			T		wet - extremely dense			**50/				
70.0												
72.0	30	SS	\parallel				117.3					
74.0												
76.0	31	SS	Τ					**50/				
78.0					78.0							
80.0	32	SS		Т	Light brown fine to coarse sand (SP) with layers of white and gray silty fine to coarse (SM-Caliche) - moist to wet - extremely de	e sand nse						
82.0					Drillers noted hard drilling and gravel while 80.0 to 85.0 feet	drilling form		**50/				
84.0					83.0 Gray and white silty fine to medium sand (caliche - wet - extremely dense	SM) with						
86.0	33	SS	ľ					**50/				
88.0					88.0 Light gray silty clay (CL), some sand, trace	e caliche -						
90.0	3/1	SS			moist to wet - hard		126.5	/ + + + + + + + + + + + + + + + + + + +				
92.0	J-		ľ					***50/				
94.0												
	35	SS					107.6	+ **				
96.0	აა	33	Ľ		97.0			**50/				
98.0					Light gray clayey fine to coarse sand (SC) extremely dense	- moist -						
100.0					£/	 ued		* Calibrated Penetrometer				
								OM JOB NO. 60225561 SHEET NO. 2 OF 3				

				1	LIENT		LOG OF BOF	ring nui	MBER B-1-1			
AΞ	C	D٨	1		PR-GDF SUEZ North America ROJECT NAME		ARCHITECT/	ENGINE				
			_		coleto Creek Energy Facility Ash	Pond	741011112017	LIVOIIVLI				
SITE LO									-O-UNCONFINE TONS/FT. ²	D COMPR	ESSIVE STR	ENGTH
Golia	ad (Cou	nt	y, I	annin, Texas			_	1 2	3	4	5
DEPTH (FT) ELEVATION (FT)	SAMPLE NO.	SAMPLE TYPE	SAMPLE DISTANCE	RECOVERY	DESCRIPTION OF M	IATERIAL		UNIT DRY WT. LBS. / Ft.³	10 20	WATER CONTENT	% LIN	QUID IIT % A
$\overline{\mathbf{X}}$	SAM	SAM	SAM	REC	SURFACE ELEVATION: +139.6		(Continued)	UNIT LBS.			BLOWS/FT.	50
102.0	36	SS		-	Light gray clayey fine to coars extremely dense 103.0							**50/0.3
104.0					Brown silty clay (CH) with irrg moist - hard	ular gray silty cla	y lenses -			\		1
06.0	37	SS						92.5			† 0 *	
10.0 12.0	38	SS		Ι				102.6		4	+ 0*	⊗ 51
14.0			1					04.0		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		
116.0	39	SS		Ш				94.8			Ø 38/*	
20.0	-										∦.	
121.0	40	ST	Ι	Ц	121.0 End of Boring			98.0	*Calibrated	<u> </u>		
					HW casing driven to 5.0 feet Boring advanced from 6.0 fee rock bit and drilling fluid Boring advanced from 50.0 fer rock bit and drilling fluid Boring abandoned with bento tremie method Split-spoons were driven with	eet to 100.0 feet on the nite quick grout of	with 3-inch					
	The	stra	tific	cati	on lines represent the approximate bound	lary lines betwee	n soil types:	in situ,			gradual.	
	y bef	ore o	as	ing	installation BORING STARTE	11/5/11	AE	COM OFF	Green Bay	y, Wiscoı	nsin 5431	1
′L 10.	.0 to	12.0	fee	t W	S BORING COMPLI	ETED 11/6/11	EN	TERED B'	H	3	OF 3	
The stratification lines represent the approximate boundary lines between soil types: in situ, the transition model of the stratification lines represent the approximate boundary lines between soil types: in situ, the transition model of the stratification lines represent the approximate boundary lines between soil types: in situ, the transition model of the stratification lines represent the approximate boundary lines between soil types: in situ, the transition model of the stratification lines represent the approximate boundary lines between soil types: in situ, the transition model of the stratification lines represent the approximate boundary lines between soil types: in situ, the transition model of the stratification lines represent the approximate boundary lines between soil types: in situ, the transition model of the stratification lines represent the approximate boundary lines between soil types: in situ, the transition model of the stratification lines represent the approximate boundary lines between soil types: in situ, the transition model of the stratification lines represent the approximate boundary lines between soil types: in situ, the transition model of the stratification lines represent the approximate boundary lines between soil types: in situ, the transition model of the stratification lines represent the approximate boundary lines between soil types: in situ, the transition model of the stratification lines represent the approximate boundary lines between soil types: in situ, the transition model of the stratification lines represent the approximate boundary lines between soil types: in situ, the transition model of the stratification lines represent the approximate boundary lines between soil types: in situ, the transition model of the stratification lines represent the approximate boundary lines between soil types: in situ, the transition model of the stratification lines represent the stratification lines represent the stratification lines represent the stratification lines represent th								P'D BY TM	T AECO	м ЈОВ NO. 602	25561	

CLIENT LOG OF BORING NUMBER B-2-1 **IPR-GDF SUEZ North America** PROJECT NAME ARCHITECT/ENGINEER Coleto Creek Energy Facility Ash Pond -O UNCONFINED COMPRESSIVE STRENGTH SITE LOCATION TONS/FT.2 Goliad County, Fannin, Texas 5 E LIQUID LIMIT % PLASTIC WATER SAMPLE DISTANCE LIMIT % CONTENT % ELEVATION DEPTH (FT) \times -**DESCRIPTION OF MATERIAL** - -SAMPLE TYPE Ķ SAMPLE NO. UNIT DRY V LBS. / Ft.³ 10 30 50 STANDARD STANDARD PENETRATION BLOWS/FT. 20 40 50 ⊗ 10 REC SURFACE ELEVATION: +139.2 Fill: Gray and brown mottled clayey sand (SC), trace fine 121.6 \otimes 1 SS gravel, trace caliche nodules and layers, occasional thin, 2.0 saturated silty sand lenses - moist to wet - very stiff to 2 SS 4.0 116.1 3 SS 6.0 4 SS 8.0 121.3 5 SS 10.0 118.6 6 ST 12.0 117.4 7 SS 14.0 8 SS 16.0 114 0 9 'S 18.0 110.9 10 ST 20.0 114.5 11 SS 22.0 12 SS 24.0 113.0 13 SS 26.0 14 28.0 15 SS 30.0 16 SS ⊗ 32.0 White and light gray clayey sand (SC-caliche) - wet -118.4 ₾0* 17 ST loose to medium dense 34.0 18 SS \otimes 36.0 15 Note: Saturated loose zone from 36.0 feet to 36.9 feet \otimes SS 19 38.0 20 SS 40.0 21 SS Grayish brown fine to coarse sand (SP) - wet - medium 21A 42.0 SS dense to dense 22 SS Note: Clayey sand (SC-Caliche) layers encountered 44.0 from 42.9 feet to 43.3 feet and 44.0 feet to 45.0 feet 136.7 23 SS \otimes 46.0 STS.GDT 24 SS 48.0 25 SS 50.0 50.0 60225561.GPJ ... continued Calibrated Penetrometer AECOM JOB NO. 60225561 SHEET NO. The stratification lines represent the approximate boundary lines between soil types: in situ, the transition may be gradual

. -		~ •	_	١,	LIENT I PR-GDF	SUEZ North America	LOG OF BOR	IING INUI	MBER B-2-1			
4 =	EC		И	F	ROJECT N	AME	ARCHITECT/E	ENGINE	≣R			
				(Coleto C	reek Energy Facility Ash Pond						
	OCATI		nt	v I	Fannin,	Техас			-O-UNCONFINED TONS/FT.2	COMPRESS 3	IVE STF	ENGTH 5
001	liau v		Ι	y, 	i aiiiiii,	Texas		+	1 2	3	+	1
DEPTH (FT) ELEVATION (FT)	-		팅						PLASTIC LIMIT % C	WATER ONTENT %		QUID MIT %
(F) (F)	o	YPE	STA	_		DESCRIPTION OF MATERIAL		¥.	×			A
DEPTH (FT) ELEVATION	ž ! ! !!	一一一	LE D	VER				DRY 1	10 20	+	10	50
	SAMPLE NO.	SAMPLE TYPE	SAMPLE DISTANCE	RECOVERY	SURFACE	E ELEVATION: +139.2	(Continued)	UNIT DRY WT. LBS. / Ft. ³		RATION BLO		
	26	SS	Ï	Ť		Grayish brown silty fine sand (SM) - wet -	,	110.4	10 20	30 4	10	50
52.0				Г	53.0					\33		
54.0		\vdash		H	////	Light gray clayey fine sand (SC) - wet - de	nse	1		· ·		
56.0	- 07	-	+	\mathbb{H}				99.2		\ \ '.		
		SS	μ	Н				30.2		&	39	
58.0	-										\ !	
60.0		_									\	
62.0	28	SS	Ц	Ц							⊗ ; 43	
					63.0) Light gray fine sand (SP-SM), trace silt - w	ot donce	-				
64.0						Light gray line salld (SF-SM), trace Slit - W	et - uelise				;	
66.0	29	SS		Ц							40	
68.0				Ц	68.0						<u> </u>	
70.0	\dashv					Light gray fine to coarse sand (SP) - wet -	dense					
	30		I		71.1						**39	
72.0	-30A	SS	ľ	П	/// /73.0	Light gray and white clayey sand (SC-calid medium dense	che) - wet -		≫ 7*16.		39	
74.0						Light gray silty fine to medium sand (SM), clay, trace fine gravel - moist to wet - extre	trace to little		1	\.\.\.\		
76.0	31	SS		П		clay, trace fine graver - moist to wet - extre	mely delise				7	⊗ **50/0
					1							\^50/U.
78.0					78.0	Tan clayey silt (CL-ML-Weathered Sandst	one) - moist to					\
80.0	32	SS	_			wet - hard					+ _O *	
82.0												
84.0	-				83.0) Light gray and brown mottled silty clay (CF)	H), trace sand -	1	 			1
		_				moist - hard	,,			, ,		
86.0	33	SS	\coprod	Щ				91.6		$\rightarrow + \otimes_{34}$	├ �*	4
88.0				П					/	\		
90.0									/	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		
	34	ss	\prod					117.3			ĕ⊅ *	
92.0											''	
94.0	\dashv				95.1						+	
96.0	35	ST	H	H	95.1	Light gray clayey fine sand (SC) - moist - e	extremely	1			' O*	
98.0		-	-	Н		dense		110.9				
100.0		-	+	\vdash					* Calib	roted Poss	troms	<u> </u>
						contir	iu c u			rated Pene	u ome	ræi
The	stratifica	ation lir	nes	repre	esent the app	roximate boundary lines between soil types: in situ, the trans	ition may be gradual.	AEC	DM JOB NO. 60225561	SHEET NO). 2	OF ;

A =4	_		_		LIENT PR-GDF SUEZ NortI	h America	LOG OF BC	oring nui	MBER B.	-2-1		
AE(.(JΛ	1	F	ROJECT NAME		ARCHITECT	T/ENGINEE	R			
SITE LOCA	ATIC)N		1	Coleto Creek Energy	racility Ash Pond			-O- UNCON	NFINED COMPF	RESSIVE STR	ENGTH
			nt	у,	Fannin, Texas				TONS/F	T. ² 2 3		5
DEPTH (FT) ELEVATION (FT)		ш	SAMPLE DISTANCE		DESC	CRIPTION OF MATERIAL			PLASTIC LIMIT %	WATER CONTENT	T% LIM	QUID IIT %
DEPTH (FT)	ON	ΞΤΥΡ	SIO	ERY	DESC	SKIF HON OF WATERIAL		t.³ W]	10	20 30		50
	SAMPLE NO.	SAMPLE TYPE	MPLE	COV				UNIT DRY WT.	⊗	STANDARD PENETRATION	N BI OWS/FT	
	ශ් 36	SS	δ	Z T	SURFACE ELEVATION:	+139.2 yey fine sand (SC) - moist - e	(Continue	d) 5 🖺	10	20 30	40 5	
102.0			Ľ		/// _{102.0} dense	· · · · · ·				Ī		**50/0.4
104.0					trace thin san	ay (CH) with gray silty clay ar d lenses - moist - hard	nd silt lenses,					
106.0	37	SS						99.9		•	 *	
108.0												
110.0	38	SS		Ι				96.4			+ *	
114.0												
116.0	39	SS	Ι					96.7		•	+ *	\otimes
118.0	40	SS	Т	Τ	119.5					\	+*	ĺ
					Boring advan- rock bit and d Boring advan- rock bit and d Boring aband tremie metho	ced from 50.0 feet to 118.0 fo rilling fluid oned with bentonite quick gro	eet with 3-inch					
T	Γhe	stra	tific	ati	on lines represent the app	proximate boundary lines bet	ween soil types	s: in situ,				
WL Dry	bef	ore c	asi	ing	installation	BORING STARTED 11/3/11	Α	AECOM OFF		Kepler Drive n Bay, Wisco		1
WL 8.0 t						BORING COMPLETED 11/4/11	E	NTERED B'	r s	SHEET NO.	OF 3	
WL						RIG/FOREMAN D-25/BZ	А	APP'D BY	т	ECOM JOB NO 60 2	225561	

					CLIENT		CUE7 Name Assessed	LOG OF BOR	ING NUM	1BER	B-2-	-2			
AΞ	C	D۸	M			GDF CT NA	SUEZ North America	ARCHITECT/E	NCINE	:R					
							^{™⊑} eek Energy Facility Ash Pond	ANUITEUI	LINGIINEE	.1 \					
SITE LOC										-()-U	NCONFI	NED CO	MPRESSI	VE STR	ENG
Golia	ad C	Cou	nt	у,	Fanr	nin, T	exas]		ONS/FT. ²	2	3 4	1	5
DEPTH (FT) ELEVATION (FT)	SAMPLE NO.	SAMPLE TYPE	SAMPLE DISTANCE	RECOVERY			DESCRIPTION OF MATERIAL		UNIT DRY WT. LBS. / Ft.³	LIM >	STIC IT % — — —	CONT	TER ENT % 0 4	_ LIM	QUID IT % \(\triangle\)
	SAME	SAME	SAME	3EC(SUR	FACE	ELEVATION: +105.1		JNIT -		Ø PE	NETRA	TION BLC		50
2.0	1 2	SS	Ï	Ĭ		2.8	Black and dark brown organic sandy clay (O gravel, trace wood - moist - very stiff to hard			⊗_5	_	0*	*	*	
4.0	2A	SS	H	Ħ		2.0	Light gray and white clayey fine to coarse sa (SC-Caliche), trace fine to coarse gravel - m	and loist to wet -	90.9		**	16 -	•		
6.0	3	SS	H	İ			dense to medium dense Note: Light brown fine to coarse sand (SP)	layers			\times 15				
8.0 10.0	5	SS		I		10.0	encountered from 6.5 feet to 7.0 feet and 8.3 feet	3 feet to 8.9	113.3		45	5			
12.0	6 6A	SS	H		////	10.6	Light gray fine to coarse sand (SP) - wet - m	nedium dense	113.3		S	**18			
12.0 14.0							Light gray and brown mottled silt (ML), trace sand - moist - medium dense	clay, trace			15	\			
16.0	7 7A	SS	\parallel	#		14.9	Light gray silty clay (CL), trace sand - moist	- hard			•	⊗,,	2 € / **32	· O*	
18.0						1	Light gray silt (ML), trace to little sand, trace medium dense	clay - moist -				/			
20.0	8	SS		L		22.0						⊗ 21			
24.0						22.0	Light brown fine sand (SP) - wet - dense					``.	·		
26.0	9	SS	Ц	L							•		\ ⊗ 35		
28.0													١		
30.0 32.0	10	SS		H							, *			⊗ \41 \	
34.0				Ļ		33.5	Light gray and light brown mottled clayey fin				/			1	
36.0	11	SS		Ė			sand (SC), trace fine to coarse gravel - mois extremely dense Drillers noted hard drilling from 34.0 to 39.0				\			⊗ ,45	5
38.0 40.0	12	SS		_			gravel while drilling				•)	» _{*,}
12.0						42.0	Light brown fine to coarse sand (SP) - wet -	dense						/	
14.0	13	SS	 											/ ⊗40	
46.0 48.0			ľ	Ĺ		47.0	Light gray and brown mottled silty clay (CL),	trace sand -					/	42	
50.0		<u> </u>	<u> </u> T	T		L	moist - hard		100.6					. <u>*</u> *.	<u> </u>
							continue	ed		*	С	alibrate	6 Pene	tromet	er
							ximate boundary lines between soil types: in situ, the transitio		1,500	M IOS	NO 02255		HEET NO		OF

				- 1	CLIENT				LOG OF BO	DRING NU	MBER	3-2-2					
Λ=		74	A			SUEZ North	America				ICINICED						
AΞ		JI	71	- 1	PROJECT NA		acility Ach D	a al	ARCHITEC	T/ENGINE	ER						
SITE LO	CATIO)NI		(Joieto Cr	eek Energy F	acility Ash P	ona			_ UNC	ONFINE	COMPRE	SSIVE S	STRENGTH	4	
			nt	y, I	Fannin, T	exas					TON	S/FT. ²	3	4	5		
					-							_		-			
DEPTH (FT) ELEVATION (FT)			SAMPLE DISTANCE								PLASTI LIMIT 9		WATER CONTENT		LIQUID LIMIT %		
DEPTH (FT) ELEVATION	NO.	Ϋ́E	ISTA	>		DESCF	RIPTION OF MA	TERIAL		UNIT DRY WT. LBS. / Ft.³	×				- <u>-</u> A		
DEPT	LE N	빌	띹	VER						DRY Ft.³	10	20	30 DARD	40	50		
<u> </u>	SAMPLE	SAMPLE TYPE	SAMF	RECOVERY	SURFACE	ELEVATION: +	105.1		(Continue	(p)	⊗ 10		TRATION 30	BLOWS/	FT. 50		
	14	SS	Ť	Ī	////	Light gray and	brown mottled sil	ty clay (CL),			10	1 /	/ 1	1	30	1	
52.0					52.0	moist - hard	e to coarse sand	(SD) wot v	von donco			_/′				-	
54.0	1					Light brown line	e to coarse sand	(SF) - Wet - 1	very derise			/					
	15 15A	SS	H	\blacksquare	54.6	Light brown and	d light gray mottle	ed siltv sandv	v clav (CL).	115.0	+ + •			+) *	*56	·⊗ **120
56.0						trace thin poorly	y-graded sand se	eams (SP) - r	moist - hard								**120
58.0]																
60.0	16	SS	-	Н						117.8		•		-ktd)*		⊗ _{***00/0}
				Щ								/				./	**83/0.
62.0					62.0	Light brown and	d brown mottled	silty fine sand	d (SM) - wet							4	
64.0						- extremely der		,	(=)			[/					
66.0	17	SS	₽	Щ								°	•		⊗ :**50/	0.6'	
					67.0										\ :		
68.0	-					Light gray silty gravel - moist -	clay (CH), trace :	sand, trace fi	ne to coarse	;					\		
70.0	18	SS			70.5	graver melec								+)* \		
70.5		SS			10.5	End of Boring	ed to 6.0 feet with				*Calib	orated F	Perietrom		-+	56	
WL 3.5						HW casing driv Boring advance rock bit and dril HW casing driv Boring advance rock bit and dril Boring abandor tremie method	en to 8.0 feet ed from 6.0 feet to ling fluid en from 8.0 feet ed from 16.0 feet	to 10.0 feet w to 10.0 feet to 69.0 feet e quick grout	with 3-inch								
	The	stra	tific	cati	ion lines rep	present the appr	oximate boundar	y lines betwe	en soil type:	s: in situ	, the trans	sition n	nay be g	radual	<u> </u>	1	
NL 0					<u> </u>		BORING STARTED	-		AECOM OF	FICE 103	5 Keple	r Drive			1	
3.5 WL	5 feet						BORING COMPLETI	11/1/11 ED		ENTERED B	BY	en Bay SHEET	, Wiscon	OF		+	
3.5	5 feet	befo	ore	cas	sing installa	tion		11/1/11		CA	.H		2	2		-	
V V L							RIG/FOREMAN	D-25/BZ		APP'D BY							

CLIENT LOG OF BORING NUMBER B-3-1 **IPR-GDF SUEZ North America** A E C O M PROJECT NAME ARCHITECT/ENGINEER Coleto Creek Energy Facility Ash Pond UNCONFINED COMPRESSIVE STRENGTH SITE LOCATION TONS/FT.² Goliad County, Fannin, Texas 5 Ē PLASTIC WATER LIQUID SAMPLE DISTANCE LIMIT % CONTENT % LIMIT % ELEVATION DEPTH (FT) \times - -**DESCRIPTION OF MATERIAL** SAMPLE TYPE Ž. SAMPLE NO. 10 30 50 ·DRY /Ft.³ STANDARD STANDARD PENETRATION BLOWS/FT. 20 40 50 LNN BS. ⊗ 10 REC SURFACE ELEVATION: +139.3 Fill: Gray and brown mottled clayey sand (SC), trace fine 114.5 Ø 1 SS gravel, occasional irregular thin silty sand seams and 2.0 19 lenses, trace caliche nodules and layers - moist to wet -114.0 2 SS stiff to hard 4.0 1153 3 SS 6.0 110.4 4 SS (%) 8.0 112.2 5 SS 10.0 124.6 6 SS Note: Saturated silty sand seams encountered from 10.5 12.0 feet to 10.9 feet, 12.5 feet to 12.7 feet, and from 15.4 feet to 15.5 feet 7 SS 14.0 106.1 8 SS 16.0 121.5 Gray clayey fine to medium sand (SC), trace caliche 113.7 9 ST 17.4 nodules, trace thin silty sand seams - moist to wet - very 18.0 Dark brown clayey sand (SC), trace caliche nodules -SS 10 20.0 moist to wet - hard 109.1 11 SS 22.0 Light gray silty sandy clay (CL), occasional irregular silty 113.6 12 SS clayey caliche (CL-caliche) layers and lenses - moist to 24.0 21 wet - hard 117.9 SS 13 26.0 Light gray clayey sand (SC), occasional silty clay (CL-caliche) layers and lenses, trace fine gravel - moist 28.0 to wet - medium dense 111.3 Note: Saturated zone encountered from 28.0 feet to 28.5 30.0 20 16 SS Light gray silty fine to coarse and (SM), trace to little clay, 32.0 trace fine gravel, trace caliche nodules - moist to wet medium dense to very dense 34.0 ⊗ 65 36.0 17 SS 36.5 End of Boring *Calibrated Penetrometer Boring advanced to 6.0 feet with solid-stem auger HW casing driven to 5.0 feet Boring advanced from 6.0 feet to 30.0 feet with 4-inch rock bit and drilling fluid Boring advanced from 30.0 feet to 35.0 feet with 3-inch rock bit and drilling fluid Boring abandoned with bentonite quick grout using tremie method Split-spoons were driven with cathead and rope STS.GDT 60225561.GPJ The stratification lines represent the approximate boundary lines between soil types: in situ, the transition may be gradual. AECOM OFFICE 1035 Kepler Drive WL BORING STARTED Dry before casing installation 11/8/11 Green Bay, Wisconsin 54311 BORING COMPLETED 11/8/11 ENTERED BY CAH WL SHEET NO. STS060701 8.0 to 10.0 feet WS APP'D BY WL RIG/FOREMAN AECOM JOB NO. **60225561** D-25/BZ

				- 1	PR-GDF SUEZ North Americ		BORING NUI	MBER B-3-2
AΞ	:C(D۸	1	F	ROJECT NAME		ECT/ENGINE	ER
				- 1	Coleto Creek Energy Facility			
SITE LO								-UNCONFINED COMPRESSIVE STRENGT
Goli	ad (Cou	nt	у,	Fannin, Texas			1 2 3 4 5
Ê			兴					PLASTIC WATER LIQUID
DEPTH (FT) ELEVATION (FT)		Щ	SAMPLE DISTANCE		DESCRIPTION	OF MATERIAL	ن ا	LIMIT % CONTENT % LIMIT % ★ Φ Δ
DEPTH (FT) ELEVATION	Ŏ.	ΤΥ	DIS.	감	DEGORII TION	OI WATERIAL	≯ ∞.	10 20 30 40 50
	SAMPLE NO.	SAMPLE TYPE	MPLE	COVE			UNIT DRY WT.	STANDARD
\times	SAI	SAI	SAI	Ä	SURFACE ELEVATION: +122.8			
2.0	1	ss			Fill: Dark brown or brow trace roots - moist - med	n silty fine sand (SM), trace cl lium dense	ay,	<i>→</i> ⊗ ₁₂
2.0	2	SS	Ħ	Ħ	3.2			♦ ⊗
4.0	2A	SS	H	Ħ	Fill: Brown and gray mo fine gravel, trace roots -	ttled silty sandy clay (CL), trac		*18 + *
6.0	3	SS		Ц	6.0		117.0	• ⊗ 1° ·
	4	ss			Light gray and white silty to little fine gravel - mois	r sandy clay (CL-caliche), trace	e _{122.1}	
8.0	+-	60	${\dagger}$	+	William in e graver - mois	пан	113.8	\ ': 18 _+
10.0	5	SS	\coprod	\parallel	10.0	A P-I \ 4	113.0	♦ 19 ♦
12.0	6	ss	$\ $	۲	White silty fine sand (SN 12.0 moist - dense	M-caliche), trace to little clay -		●
			ľ		Light brown fine to coars	se sand (SP), trace fine gravel	-	
14.0				-	wet - dense to medium o	iense		
16.0	7	SS	\coprod	\perp	16.0			• 8 ₂₃
18.0	+				Brown sitly fine to coarse gravel - wet - dense	e sand (SM), trace to little fine		
						la drilling from 16 0 fact to 10	_	
20.0	8	SS		Ľ	feet and 23.0 feet and 24	le drilling from 16.0 feet to 19.0 4.0 feet	١	
22.0					A () () () () () () () () () (
04.0								
24.0	9	SS	T		24.0 Light brown fine to coars	se sand (SP) - wet - extremely		\
26.0					dense			**5
28.0					경영화 공항화			
	10	ss			29.5			*Calibrated Penetrometer
29.5			Ī		End of Boring	. f f 20 P. J . f		*Calibrated Penetrometer
					HW casing driven to 10. Boring advanced from 19 rock bit and drilling fluid	0.0 feet to 20.0 feet with 3-inchentonite quick grout using	h	
/L _					on lines represent the approximate b	TARTED	pes: in situ,	FICE 1035 Kepler Drive
Dr VL	y bef	ore c	as	ing	installation	11/2/11	ENTERED B	Green Bay, Wisconsin 54311
14	.0 fee	t WS	<u> </u>			COMPLETED 11/2/11	CA	H 1 1
/L					RIG/FORE	MAN D-25/BZ	APP'D BY	AECOM JOB NO. 60225561

					CLIENT			LOG OF BOR	ING NUM	MBER B-4-1	
AΞ	C	D۸	1			GDF CT NA	SUEZ North America	ARCHITECT/E	ENCINE	- D	
	•		•	1			eek Energy Facility Ash Pond	ARCHITECT/	ENGINEE	=R	
SITE LOC										-O- UNCONFINED COM	IPRESSIVE STREE
Golia	ad C	Cou	nty	y,	Fanr	nin, T	Гехаѕ			TONS/FT. ² 2 3	4 5
DEPTH (FT) ELEVATION (FT)	SAMPLE NO.	SAMPLE TYPE	SAMPLE DISTANCE	RECOVERY			DESCRIPTION OF MATERIAL		UNIT DRY WT. LBS. / Ft.³	PLASTIC WAT LIMIT % CONTE 10 20 30 STANDARD STANDARD PENETRAT	ENT % LIMIT
\times	SA	SA	SA	RE	SUR	FACE	ELEVATION: +139.2	20) (6	8 g	10 20 30	ION BLOWS/FT. 0 40 50
2.0	2	SS SS		I			Fill: Gray and brown mottled clayey sand (s gravel, trace thin irregular silty sand seams trace silty clay caliche nodules and layers - stiff to hard	and lenses,	117.3	♥ [⊗] 17	O* O*
6.0	3	ss			\bowtie				111.4	⊗• /12	0*/-0*
8.0	4	ST							124.4 117.7		
12.0	6	SS 3" ST		I					114.9	14	* *
14.0 16.0		SS							122.0 118.2	× 21	*
18.0	9	SS		L					110.1	• \$ ₂₀	O* O*
20.0	10	SS				20.6			115.2 102.3	● ⊗ ● ○*	29 0*
22.0	11A 12	SS	Ц.	1		23.0	Light brown silty sandy clay (CL) with calich wet - very stiff to hard	ie - moist to	110.2	€23 ● 23	O* O*
24.0 26.0	12A	_		T		23.0	Light brown, dark brown, and gray mottled of (SC), trace organics, trace fine gravel, trace silty sand seams and lenses - moist - hard	clayey sand e thin irregular	110.8	◆ ⊗ ***2* ***22 ×	*
28.0	14	ss		İ		28.0	Triaxial Test S-14	ð' = 27 dea			0* **
30.0	15	ss	П			30.0	Light brown clayey sand (SC) - moist to wet		115.7	• 8 ₂₃	
32.0	16	SS				33.0	dense Light brown silty fine to coarse sand (SM), t moist to wet - medium dense	race clay -		√ 23	3
34.0	17	SS				35.6	Light brown silty sandy clay (CL) with calich gravel - moist to wet - hard			\	+*
36.0	17A	SS				38.0	Light brown fine to coarse sand (SP) - wet - dense	· medium		♦	28
						30.0	Grayish brown fine to coarse sand (SP) - we	et - dense			
40.0	18	SS	Т	Ι			Drillers noted sporadic, thin gravel layers where the sporadic spo	hile drilling			\ ⋈ ⋈ 35
42.0 44.0											
46.0	19	SS		Ι							⊗ 35
48.0											
50.0						50.0				/	
							continu	ied		* Calibrate	d Penetrometer
The str	ratifica	tion lir	nes r	epr	esent th	ne appro	oximate boundary lines between soil types: in situ, the transiti	on may be gradual.	AECO	DM JOB NO. SH 60225561	HEET NO. 1

				C	LIENT		LOG OF BOI	RING NUN	MBER B	-4-1				
A =		1	4	ı	PR-GDF SUEZ North	America								
AΞ		JN	7	1	ROJECT NAME		ARCHITECT	/ENGINEE	ĒR					
				C	Coleto Creek Energy F	acility Ash Pond								
SITE LOC			4-		! -				-O-UNCO	NFINED 'FT. ²		PRESSI		
Golla	aa C	ou	nty	/, I	Fannin, Texas			_	1	2	3	4	- 5	i
Æ			ш						PLASTIC		WAT	ER	LIQI	JID
DEPTH (FT) ELEVATION (FT)		l	SAMPLE DISTANCE						LIMIT %		CONTE		LIMI	Т%
DEPTH (FT)	ō.	SAMPLE TYPE	JIST,	≿	DESCF	RIPTION OF MATERIAL		UNIT DRY WT.	×-		. — —		-	
EP!	ĹΕΝ	ᄪ	LEC	VER				DRY Ft.³	10	20	30	-) 5	
	SAMPLE NO.	AMP	AMP	RECOVERY	OUDEACE ELEVATION:	100.0	(O ti	NT N	\otimes		IDARD TRATI	ON BLO	WS/FT.	
			S	<u>~</u>	SURFACE ELEVATION: +	ine to coarse sand (SP), trace	(Continued	1) ⊃ =	10	20	30) 40) 5	$\overline{}$
51.5	20	SS			gravel, occasio caliche - moist End of Boring Boring advance HW casing driv Boring advance rock bit and dril Boring advance rock bit and dril Boring abandor tremie method	nal thin layers of gray silty clato wet - very dense ed to 6.0 feet with solid-stem are to 5.5 feet ed from 6.0 feet to 30.0 feet willing fluid ed from 30.0 feet to 50.0 feet	ay and auger with 4-inch with 3-inch t using		*Calibr	ated F	Penetr	rometer		
	The	stra	tific	ati	on lines represent the appr	oximate boundary lines betwe							ual.	
L Dry	/ bef	ore o	asi	ng	installation	BORING STARTED 11/7/11	Al	ECOM OFF		Keple n Bay		ve consin	54311	
'L						BORING COMPLETED 11/7/11	E	NTERED BY		SHEET	NO.	OF		
10.	0 to	12.0	fee	t								2	2	
L						RIG/FOREMAN D-25/BZ	Al	PP'D BY TM '	т 📙	4⊏CON	JOB I	NO. 02255 (61	

					ILIENT I PR-GDF	SUEZ North	America	LOG OF E	- BORING NUMBER B-4-2						
AΞ	C	DΛ	1	F	PROJECT NA	AME		ARCHITE	CT/ENGINEE	ER .					
	- · -			(Coleto C	reek Energy	Facility Ash Pond			- UNCO	NFINED COM	ADDECCI	VE STDE	NCTH	
SITE LOG			nt	۷, ا	Fannin, 1	Texas				TONS/	FT. ²	3 4	1 5		
(FT)										PLASTIC LIMIT %	WA ⁻ CONTI		LIQU LIMIT		
DEPTH (FT) ELEVATION (FT)	NO.	SAMPLE TYPE	SAMPLE DISTANCE	ERY		DESC	RIPTION OF MATERIA	L	DRY WT.	X - 10	20 3	0 4	0 50		
	SAMPLE NO.	MPLE	MPLE	RECOVE					UNIT DRY LBS. / Ft. ³	⊗	STANDARE PENETRAT))WS/FT		
X	Ϋ́	δ	ŝ	Z.	SURFACE	ELEVATION: +	·119.6 vn and brown silty fine to	n medium sand		10	20 3	0 4)	
2.0	1	SS					e gravel, trace roots, tra		115.3	•	23				
4.0	3	SS	\parallel		4.0		: Dark brown and black				<u>⊗</u>	× ✓ 33	† _O *		
6.0	3	33	H	÷	6.0 ////	· /·	ittle sand - desiccated - nd light gray mottled silty		N			28	+		
8.0	- 4 - 5	SS				trace fine grave	el, trace irregular caliche	e nodules - moist	129.3		⊗ [′] 22		† 	_	
10.0	6	ss	Т	Τ	10.0	to 8.3 feet	ay silty sandy clay (CL) ty fine sand (SM), trace		et 124.6	<i>j</i> ∞					
12.0		30			13.0	medium dense Note: Plastic I		•		♦	2				
14.0 16.0	7	SS				Sample 6 Light brown fin dense	e to coarse sand (SP) -	wet - medium	_/	Î`\ ⊗	3/				
18.0						dollac					<i>Ĭ</i>				
20.0	8	SS		Т						/\ /\ ●@	_				
22.0						Drillers noted h	nard drilling at 22.0 feet			/	16				
24.0	9	SS	Τ	Τ					106.9		`\	,			
26.0					27.0	25.1 feet	ilty clay (CL-caliche) lay				7 ~	29			
28.0 30.0	10	SS SS	_		29.6	Light gray silty dense	fine sand (SM), trace c	lay - wet - mediur	m	Ø-					
30.0	10A	SS		Ξ	30.5	Light brown fin	e to coarse sand (SP) -	wet - dense		*Calibr	ated Penet	romoto	⊗ r 43		
30.5						Boring advanc HW casing driv Boring advanc rock bit and dri Boring abando tremie method	ed from 10.0 feet to 29.0 illing fluid oned with bentonite quicl	0 feet with 3-inch k grout using							
	The	stra	tific	cati	on lines re	present the app	roximate boundary lines	between soil typ	1				lual.		
	y bef	ore c	as	ing	installation	1	BORING STARTED 11/2/11	1	AECOM OFF	Greei	Kepler Dri 1 Bay, Wis		54311		
VL 14 .	.0 fee	t WS	;				BORING COMPLETED 11/2/11	1	ENTERED BY			1 OF	1		
VL							RIG/FOREMAN D-25/B	 Z	APP'D BY	т — /	AECOM JOB 6	NO. 302255	61		

CLIENT LOG OF BORING NUMBER B-5-1 **IPR-GDF SUEZ North America** PROJECT NAME ARCHITECT/ENGINEER Coleto Creek Energy Facility Ash Pond UNCONFINED COMPRESSIVE STRENGTH SITE LOCATION TONS/FT.² Goliad County, Fannin, Texas 5 E PLASTIC WATER LIQUID SAMPLE DISTANCE LIMIT % CONTENT % LIMIT % ELEVATION DEPTH (FT) **DESCRIPTION OF MATERIAL** \times - -SAMPLE TYPE Ķ SAMPLE NO. UNIT DRY V LBS. / Ft.³ 10 30 50 STANDARD REC \otimes PENETRATION BLOWS/FT SURFACE ELEVATION: +139.6 20 Fill: Light gray and brown mottled clayey sand (SC), 128.2 1 SS trace fine gravel, occasional thin irregular silty sand 2.0 34 seams, trace silty clay caliche nodules and layers - moist 124.7 2 SS to wet - very stiff to hard 4.0 127 5 Ø 3 SS 6.0 111.9 SS 4 8.0 5 SS 10.0 118.7 6 SS 12.0 108.9 7A SS 14.0 8 SS 16.0 1113 9 SS 18.0 20.0 32 11 SS Gray and brown silty clay (CL), trace organics, trace 116 1 11A SS 22.0 118.2 sand, trace thin saturated silty sand seams and lenses -12 ST moist to wet - very stiff to hard 24.0 White and gray silty clay (CL-caliche), little sand - moist 107.5 0* 13 SS to wet - stiff to hard 26.0 99.1 14 ST 28.0 102.5 15 SS 30.0 103.6 16 SS 8 32.0 . ⊗ 33 Gray silty fine to coarse sand (SM), trace fine gravel, 17 SS trace clay - wet - dense 34.0 Gray fine to coarse sand (SP), trace fine gravel - wet -¹⊗ 80/0.9' 36.0 18 SS extremely dense to very dense Note: Hard white silty clay (CL-caliche) in tip of Sample 38.0 40.0 19 SS 42.0 Gray silty fine sand (SM) - wet - dense to extremely 44.0 l[⊗]42 46.0 20 SS Drillers noted hard drilling and gravel and cobbles from STS.GDT 43.0 to 45.0 feet 48.0 50.0 .GPJ ... continued Calibrated Penetrometer 60225561. AECOM JOB NO. 60225561 SHEET NO. The stratification lines represent the approximate boundary lines between soil types: in situ, the transition may be gradual

				ı	LIENT	A	LOG OF BO	ORING	NUM	MBER B -	5-1			
AΞ		D٨	1		PR-GDF SUEZ North ROJECT NAME	America	ARCHITEC	T/ENIC	יואורי	:D				
	_		•		ROJECT NAME Coleto Creek Energy F	acility Ash Pond	ARUTITEC	,ı,⊏NC	IINEE	-IX				
SITE LO							1			- UNCON	FINED COI	MPRESSI	VE STRE	NGTH
Golia	ad C	Cour	nty	′, F	Fannin, Texas			\dashv	-	TONS/F	'.2	3 4	5	
(FT)			핑							PLASTIC LIMIT %		TER ENT %	LIQU LIMIT	
DEPTH (FT) ELEVATION (FT)	o	۲ <u>.</u>	SAMPLE DISTANCE	_	DESCR	RIPTION OF MATERIAL		Ę	<u>:</u>	×-) — — ·	<u>-</u>	7
LEVA I	SAMPLE NO.	SAMPLE TYPE	LE D	RECOVERY				ed)	<u></u> ±	10	20 3 STANDARI	30 4	0 50)
<u></u>	SAMF	SAMF	SAME	REC -	SURFACE ELEVATION: +1	39.6	(Continue	ed)	LBS. / Ft. ³	⊗ 10	PENETRA [*]			1
	21	SS	ï	7	No recovery Sa		(======================================				ted Pene		(X	50/(
50.4					HW casing driv Boring advance rock bit and dril Boring advance rock bit and dril Boring abandor tremie method	ed from 6.0 feet to 32.0 feet wit ling fluid ed from 32.0 feet to 50.0 feet w	th 4-inch vith 3-inch using							
	<u></u>	<u> </u>		<u></u>	,			<u> </u>		<u> </u>				_
	The	strat	ific	atio	on lines represent the appro	oximate boundary lines between					on may l		lual.	
	y bef	ore c	asiı	ng	installation	BORING STARTED 11/7/11		AECON		Greer	Bay, Wi	sconsin	54311	
) to 1	0.0 fe	et \	NS		BORING COMPLETED 11/7/11		ENTER	CAH	1	HEET NO.	2 OF	2	
VL						RIG/FOREMAN D-25/BZ		APP'D	BY TM 1	т А	ECOM JOB	NO. 60225 5	61	

(1) GENERAL INFO	RMATION		(2) FACILI	TV /OWNER	INFORMATION	
Unique Well No.	Well ID No.	County	Facility Nam	e		
		Goliad	Coleto C	reek Energ	y Facility	
Common Well Name		Gov't Lot (if applicable)	Facility ID		License/Permit/Monit	toring No.
1/4 of Grid Location	1/4 of Sec	; T N; R	Street Addre 45 FM 29	987		
13453086.8 ft. Local Grid Origin □		43146.7 ft. E. W.		ounty, Fan	nin, Texas 77960	
Local Grid Origin	•		Present Well	Owner eek Energy I	Original Ow Facility Same	ner
Lat State Plane	" Long	S C N		ss or Route of C		
Reason For Abandonmen	t (Jnique Well No.	City, State, Z			
Geotech Bo		eplacement Well		exas 7796		
(3) WELL/DRILLHO			(4) PUMP , I	LINER, SCR	EEN, CASING, & SEA	LING MATERIAL
Original Construction Monitoring Well Water Well	If a	Mell Construction Report available, please attach.	Liner(s) Screen I	Piping Removed? Removed? Removed? Left in Place?	ed?	No Not Applicable No Not Applicable No Not Applicable No
Drillhole / Borel Construction Type: Drilled Other (Specify)	F1	Sandpoint) Dug	Did Sea Did Ma	sing Cut Off Be ling Material Ri terial Settle Afte , Was Hole Ret	ise to Surface?	Yes No Yes No Yes No Yes No Yes No
Formation Type: Unconsolidated I Total Well Depth (ft)	121 በ	Bedrock Casing Diameter (in.) 4.0	Co	d Method of Planductor Pipe - Ceened & Pourecentonite Chips)	i Other (E	tor Pipe - Pumped Explain)
(From ground surface	3.0	Casing Depth (ft.) 5.0	. — `	Materials at Cement Grou		nonitoring wells and coring well boreholes only
Lower Drillhole Dian	neter (in.)		1 —	nd-Cement (Con	icrete) Grout	
	hat Depth?	Yes No Unknown N/A Feet	Cla	ncrete ny-Sand Slurry ntonite-Sand Sh	· -	Bentonite Chips Granular Bentonite Bentonite-Cement Grout
Depth to Water (Feet)		-	L Cn	ipped Bentonite		Bentonite - Sand Slurry
(5)	Sealing Materia	! Used	From (Ft.)	To (Ft.)	No. Yards, Sacks, Sealant, or Volume	Mix Ratio or Mud Weight
	Quik-Gro	out	Surface	121.0	50 gallons	
	- <u>-</u>					
(6) Comments						
(7) Name of Person or Fig	rm Doing Sealing Wo		nent			
AECOM Technica	al Services, Inc	11/6/11				
Signature of Person Doin	g Work	Date Signed 11/6/11				
Street or Route 1035 Kepler Drive	9	Telephone Number 920-468-1978				
City, State, Zip Code Green Bay, Wisco	onsin 54311					

(1) GENERAL INFORMATION		(2) FACILI	TY/OWNER	INFORMATION	
Unique Well No. Well ID	No. County Goliad	Facility Nam Coleto C	e reek Energ	y Facility	
Common Well Name B-2-1	Gov't Lot (if applicable)	Facility ID		License/Permit/Monit	coring No.
1/4 of 1/4 of Sec		Street Addre 45 FM 29	987		
13453065.2 ft. ⊠ N. □ S.,		City, Village Goliad Co		nin, Texas 77960	
•) or Well Location	Present Well	Owner	Original Ow	ner
Lat Long	or s c N		eek Energy F		
State Plane ft. N.	ft. E. Zone	45 FM 29			
Reason For Abandonment Geotech Boring	Unique Well No. of Replacement Well	City, State, Z Fannin, T	ip Code exas 77960	0	
(3) WELL/DRILLHOLE/BOREH				EN, CASING, & SEA	LING MATERIAL
Original Construction Date1 Monitoring Well Water Well	1/3/11 If a Well Construction Report is available, please attach.	Pump & Liner(s) Screen I	Piping Remove Removed? Removed? Left in Place?	d?	No X Not Applicable No X Not Applicable No X Not Applicable No V Not Applicable
Construction Type:	ven (Sandpoint) Dug	Did Sea Did Ma	sing Cut Off Bel ling Material Ris terial Settle Afte , Was Hole Reto	se to Surface?	Yes No Yes No Yes No Yes No No
Formation Type: Unconsolidated Formation Total Well Depth (ft)119.5	Bedrock Casing Diameter (in.) 4.0	Co	d Method of Place nductor Pipe - Governed & Poured Bentonite Chips)		tor Pipe - Pumped ∃xplain)
(From ground surface)	Casing Depth (ft.) 5.0	☐ Ne	Materials at Cement Grout ad-Cement (Cond	monit	nonitoring wells and toring well boreholes only
Was Well Annular Space Grouted? If Yes, To What Depth? Depth to Water (Feet)		Cla	ncrete y-Sand Slurry ntonite-Sand Slur ipped Bentonite	my	Bentonite Chips Granular Bentonite Bentonite-Cement Grout Bentonite - Sand Slurry
	sterial Used	From (Ft.)	To (Ft.)	No. Yards, Sacks, Sealant, or Volume	Mix Ratio or Mud Weight
Quik-	Grout	Surface	19.5	50 gallons	
	_				
(6) Comments					
(7) Name of Person or Firm Doing Sealing AECOM Technical Services,		nent			
Signature of Person Doing Work	Date Signed 11/4/11				
Street or Route 1035 Kepler Drive	Telephone Number 920-468-1978				
City, State, Zip Code Green Bay, Wisconsin 5431	 1				

(1) GENERAL INFO	RMATION		(2) FACILI	TY /OWNER	INFORMATION	
Unique Well No.	Well ID No.	County	Facility Nam			
Common Well Name	B-2-2	Gov't Lot (if applicable)	Facility ID		License/Permit/Monit	foring No.
1/4 of 1/4 of Sec ; T N; R E Grid Location		Street Addre				
13452977.2 ft. \boxtimes N. \square S., 2543676.7 ft. \boxtimes E. \square W. Local Grid Origin \square (estimated: \square) or Well Location \square			ounty, Fani	nin, Texas 77960		
Lat°'	•		Present Well Owner Coleto Creek Energy Facility Original Owner Same			
Lat ' Long ' " or State Plane ft. N ft. E Zone			Street Address or Route of Owner 45 FM 2987			
Reason For Abandonment Geotech Bo		Jnique Well No.	City, State, Z	Cip Code exas 7796	.0	
(3) WELL/DRILLHO		eplacement Well			EEN, CASING, & SEA	LING MATERIAL
Original Construction Monitoring Well Water Well Drillhole / Borehe	Date11/1/		Pump & Liner(s) Screen I	E Piping Removed? Removed? Removed? Left in Place?		No Not Applicable No Not Applicable No Not Applicable No Not Applicable
Construction Type: Drilled Other (Specify)	F1	Sandpoint) Dug	Did Sea Did Ma	sing Cut Off Be ling Material Ri terial Settle Afte , Was Hole Reto	ise to Surface?	Yes No Yes No Yes No Yes No
Formation Type: Unconsolidated Formation Total Well Depth (ft)	70.5	Bedrock Casing Diameter (in.) 4.0	Co	d Method of Planductor Pipe - Coreened & Poureof Bentonite Chips)	i Other (I	tor Pipe - Pumped Explain)
(From ground surface) Casing Depth (ft.) 10.0			Materials at Cement Grou		nonitoring wells and coring well boreholes only	
Lower Drillhole Diameter (in.)		Cola Cla	nd-Cement (Con ncrete ay-Sand Slurry ntonite-Sand Slu ipped Bentonite	arry	Bentonite Chips Granular Bentonite Bentonite-Cement Grout Bentonite - Sand Slurry	
(5)	Sealing Materia	Used	From (Ft.)	To (Ft.)	No. Yards, Sacks, Sealant, or Volume	Mix Ratio or Mud Weight
_	Quik-Gro	out	Surface	70.5	30 gallons	
(6) Comments						
(7) Name of Person or Fire AECOM Technica			nent			
Signature of Person Doing		Date Signed 11/2/11				
Street or Route 1035 Kepler Drive		Telephone Number 920-468-1978				
City, State, Zip Code	nsin <i>54</i> 311	·				

(1) GENERAL INFORMATION	T	(2) FACILI	TY /OWNER	INFORMATION	
Unique Well No. Well	ID No. County Goliad	Facility Nam Coleto C	reek Energ	y Facility	
Common Well Name B-3-1	Gov't Lot (if applicable)	Facility ID		License/Permit/Moni	toring No.
1/4 of 1/4 of Sec	; T N; R	Street Addre	987		
	., <u>2543663.1</u> ft. ⊠ E. □ W.	City, Village Goliad C		nin, Texas 77960	
	d:) or Well Location	Present Well	Owner	Original Ow	ner
Lat Lo	ong or or	1	eek Energy F		
State Plane ft. N.		45 FM 29			
Reason For Abandonment Geotech Boring	Unique Well No. of Replacement Well	City, State, Zip Code Fannin, Texas 77960			
(3) WELL/DRILLHOLE/BORE				EEN, CASING, & SEA	LING MATERIAL
Original Construction Date Monitoring Well Water Well Drillhole / Borehole	11/8/11 If a Well Construction Report is available, please attach.	Pump & Liner(s) Screen I Casing	Removed? Removed? Removed? Left in Place?	ed?	No X Not Applicable No X Not Applicable No X Not Applicable No
Construction Type:	Oriven (Sandpoint) Dug	Did Sea Did Ma	sing Cut Off Bel ling Material Ri- terial Settle Afte , Was Hole Reto	se to Surface?	Yes No Yes No Yes No Yes No
Formation Type: Unconsolidated Formation Total Well Depth (ft)	☐ Bedrock Casing Diameter (in.)4.0	Co	d Method of Pla nductor Pipe - G reened & Poured Bentonite Chips)	Other (1	tor Pipe - Pumped Explain)
(From ground surface) Lower Drillhole Diameter (in.)	Casing Depth (ft.) 5.0	☐ Ne	Materials at Cement Grout nd-Cement (Con	moni	nonitoring wells and toring well boreholes only
Was Well Annular Space Grouted? If Yes, To What Depth? Depth to Water (Feet)	N/A Feet	Cla	ncrete ay-Sand Slurry ntonite-Sand Slu ipped Bentonite	rry _	Bentonite Chips Granular Bentonite Bentonite-Cement Grout Bentonite - Sand Slurry
	Material Used	From (Ft.)	To (Ft.)	No. Yards, Sacks, Sealant, or Volume	Mix Ratio or Mud Weight
Qui	k-Grout	Surface	36.5	20 gallons	
	_				
(6) Comments					
(7) Name of Person or Firm Doing Sea AECOM Technical Service		ment			
Signature of Person Doing Work	Date Signed 11/8/11				
Street or Route 1035 Kepler Drive	Telephone Number 920-468-1978				
City, State, Zip Code Green Bay, Wisconsin 543					

(1) GENERAL INFO	RMATION		(2) FACILIT	ΓΥ /OWNER	INFORMATION	
Unique Well No.	Well ID No.	County	Facility Nam		v Facility	
	D 2 2	Gollad	Facility ID	reek Energ	License/Permit/Monit	toring No
Common Well Name		Gov't Lot (if applicable)	1 dointy 1D		Biconse/Termibiwom	ioning 140.
1/4 of 1/4 of Sec ; T N; R E Grid Location W		Street Addres 45 FM 29				
1341251.3 ft. \boxtimes N. \square S., 2543721.2 ft. \boxtimes E. \square W.		City, Village		nin Toyaa 77060		
Local Grid Origin	(estimated:) or Well Location	Goliad County, Fannin, Texas 77960 Present Well Owner Original Owner			
Lat ' Long ' or		Coleto Creek Energy Facility Same				
State Plane		S C N	Street Addres 45 FM 29	ss or Route of C	Owner	
Reason For Abandonment		Inique Well No.	City, State, Zip Code			
Geotech Bo		eplacement Well		exas 7796		T DIC MARKETA
(3) WELL/DRILLHO	LE/BOREHOLE 11/2/				EEN, CASING, & SEA	571
Original Construction	Date	<u> </u>		Piping Remove Removed?		No Not Applicable No Not Applicable
Monitoring Well	l If o	Wall Construction Panert	l ' '	Removed?	Yes	No Not Applicable
Water Well	is a	Well Construction Report vailable, please attach.	1	Left in Place?		No
Drillhole / Boreho	ole		Was Ca	sing Cut Off Be	low Surface?	Yes No
Construction Type:				ling Material Ri	[7]	Yes No
☑ Drilled ☐ Driven (Sandpoint) ☐ Dug		Did Ma	terial Settle Afte	er 24 Hours?	Yes No	
Other (Specify)				, Was Hole Rete		Yes No
Formation Type:			l — 1		icing Sealing Material	
Unconsolidated Fo	ormation	Bedrock		nductor Pipe - C	· —	tor Pipe - Pumped
	20.5	3 . 5 4.0	l .	eened & Poured Bentonite Chips)	,	Explain)
Total Well Depth (ft) (From ground surface)		Casing Diameter (in.)	Sealing Materials For monitoring wells and			
	3.0	Casing Depth (ft.)	Neat Cement Grout monitoring well boreholes only			
Lower Drillhole Diam	eter (in.)		☐ Sar	nd-Cement (Con	crete) Grout	
Was Well Annular Spa	ace Grouted?	Yes No Unknown	. —	ncrete		Bentonite Chips
If Yes, To Wh	at Depth?	N/A Feet	Clay-Sand Slurry Granular Bentonite			
Depth to Water (Feet)	140		Bentonite-Sand Slurry Bentonite-Cement C		Bentonite - Sand Slurry	
		_			No. Yards, Sacks,	Mix Ratio
(5)	Sealing Material	Used	From (Ft.)	To (Ft.)	Sealant, or Volume	or Mud Weight
	Quik-Gro	ut	Surface	29.5	20 gallons	
(6) Comments						
(7) Name of Person or Fire	m Doing Sealing Wo	rk Date of Abandonn	nent			
AECOM Technica						
Signature of Person Doing	Work	Date Signed 11/2/11				
Street or Route		Telephone Number				
1035 Kepler Drive		920-468-1978				
City, State, Zip Code	nein 5/211					

(1) GENERAL INFO	(2) FACILI	TY /OWNER	INFORMATION			
Unique Well No.	Well ID No.	County Goliad	Facility Nam Coleto C	reek Energ	y Facility	
Common Well Name		Gov't Lot (if applicable)	Facility ID		License/Permit/Monit	toring No.
1/4 of 1 Grid Location	/4 of Sec	; T N; R	Street Addre 45 FM 29	987		
		43740.9 ft. ⊠ E. □ W.	City, Village Goliad Co		nin, Texas 77960	
Local Grid Origin) or Well Location	Present Well	Owner ek Energy Fa	Original Ow acility Same	ner
Lat				ss or Route of O		
Reason For Abandonment		Jnique Well No.	City, State, Z			
Geotech Bo		eplacement Well		exas 7796		Y THE SELECTION OF A
(3) WELL/DRILLHO			(4) PUMP, I	LINER, SCRE	EEN, CASING, & SEA	571
Original Construction Monitoring Well Water Well	Ifa	111 a Well Construction Report available, please attach.	Liner(s) Screen I	E Piping Remove Removed? Removed? Left in Place?	Yes Yes	No Not Applicable No Not Applicable No Not Applicable No
☐ Drillhole / Boreho Construction Type: ☐ Drilled ☐ Other (Specify)	-	Sandpoint) Dug	Did Sea Did Ma	sing Cut Off Bel ling Material Ris terial Settle Afte , Was Hole Reto	se to Surface?	Yes No Yes No Yes No Yes No Yes No
Formation Type: Unconsolidated Formation Total Well Depth (ft)	E4 E	Bedrock Casing Diameter (in.) 5.0	Co	d Method of Plan nductor Pipe - Greened & Poured Bentonite Chips)	Other (I	tor Pipe - Pumped Explain)
(From ground surface) Lower Drillhole Diam) 3 N	Casing Depth (ft.) 4.0	☐ Ne	Materials at Cement Grout	monit	nonitoring wells and toring well boreholes only
Was Well Annular Spa If Yes, To Wh Depth to Water (Feet)	nat Depth?	Yes No Unknown N/A Feet	Cla	ncrete y-Sand Slurry ntonite-Sand Slu ipped Bentonite		Bentonite Chips Granular Bentonite Bentonite-Cement Grout Bentonite - Sand Slurry
(5)	Sealing Materia	! Used	From (Ft.)	To (Ft.)	No. Yards, Sacks, Sealant, or Volume	Mix Ratio or Mud Weight
	Quik-Gro	out	Surface	51.5	25 gallons	
(6) Comments						
(7) Name of Person or Firm AECOM Technica			nent			
Signature of Person Doing		Date Signed 11/7/11				
Street or Route 1035 Kepler Drive		Telephone Number 920-468-1978				
City, State, Zip Code Green Bay, Wisco	nsin 54311					

(1) GENERAL INFORMATION		(2) FACILIT	TY /OWNER	INFORMATION	
Unique Well No. Well ID No.	County Goliad	Facility Nam Coleto C	reek Energ	y Facility	
Common Well Name B-4-2	Gov't Lot (if applicable)	Facility ID		License/Permit/Monit	toring No.
1/4 of 1/4 of Sec ;	T N; R E	Street Addres 45 FM 29			
13450619.3 ft. ⋈ N. ☐ S., 2543806.7 ft. ⋈ E. ☐ W. Local Grid Origin ☐ (estimated: ☐) or Well Location ☐		City, Village Goliad Co	or Town Dunty, Fani	nin, Texas 77960	
		Present Well Owner Coleto Creek Energy Facility Same			
Lat Long or or s or State Plane ft. N ft. E Zone			Coleto Creek Energy Facility Same Street Address or Route of Owner 45 FM 2987		
Reason For Abandonment U	Inique Well No.	City, State, Z			
	placement Well		exas 7796		
(3) WELL/DRILLHOLE/BOREHOLE		(4) PUMP , I	<u>INER, SCRI</u>	EEN, CASING, & SEA	
□ Water Well is a	Well Construction Report vailable, please attach.	Liner(s) Screen F	Piping Removed? Removed? Removed? Left in Place?		No Not Applicable No Not Applicable No Not Applicable No
 ☑ Drillhole / Borehole Construction Type: ☑ Drilled ☑ Other (Specify) 	Sandpoint) Dug	Did Sea Did Mat	sing Cut Off Be ling Material Ri terial Settle Afte , Was Hole Reto	ise to Surface?	Yes No Yes No Yes No Yes No Yes No
Formation Type: Unconsolidated Formation Total Well Depth (ft) 31.0	Bedrock Casing Diameter (in.) 4.0	Con	d Method of Pla nductor Pipe - G eened & Poured sentonite Chips)	i Other (I	tor Pipe - Pumped Explain)
(From ground surface) Lower Drillhole Diameter (in.) 3.0	Casing Depth (ft.) 5.0	Ner	Materials	t monit	nonitoring wells and toring well boreholes only
Was Well Annular Space Grouted? If Yes, To What Depth? Depth to Water (Feet) 14.0	Yes No Unknown N/A Feet	Coi	d-Cement (Connerete y-Sand Slurry ntonite-Sand Slu pped Bentonite	arry	Bentonite Chips Granular Bentonite Bentonite-Cement Grout Bentonite - Sand Slurry
(5) Sealing Material	Used	From (Ft.)	To (Ft.)	No. Yards, Sacks, Sealant, or Volume	Mix Ratio or Mud Weight
Quik-Gro	ut	Surface	31.0	20 gallons	
(6) Comments					
(7) Name of Person or Firm Doing Sealing Work AECOM Technical Services, Inc Signature of Person Doing Work	. 11/2/11 Date Signed 11/2/11	nent			
	Telephone Number 020-468-1978				
Green Bay, Wisconsin, 54311					

(1) GENERAL INFORMATION		(2) FACILIT	TY /OWNER	INFORMATION	
Unique Well No. Well ID No.	County Goliad	Facility Nam Coleto C	e reek Energ	y Facility	
Common Well Name B-5-1	Gov't Lot (if applicable)	Facility ID		License/Permit/Monit	foring No.
1/4 of 1/4 of Sec ;	T N; R	Street Addres 45 FM 29			
13451003.7 ft. \boxtimes N. \square s., $\frac{2543693.8}{\square}$ ft. \boxtimes E. \square W.		City, Village Goliad Co	or Town Dunty, Fani	nin, Texas 77960	
Local Grid Origin (estimated:) or Well Location	Present Well Owner Original Owner			
Lat ' Long ' " or State Plane ft. N ft. E Zone		Coleto Creek Energy Facility Same Street Address or Route of Owner 45 FM 2987			
	nique Well No.	City, State, Z	ip Code		
	placement Well		exas 7796		
(3) WELL/DRILLHOLE/BOREHOLE		(4) PUMP , I	INER, SCRI	EEN, CASING, & SEA	
□ Water Well is a	Well Construction Report vailable, please attach.	Liner(s) Screen F	Piping Remove Removed? Removed? Left in Place?	Yes Yes	No Not Applicable No Not Applicable No Not Applicable No
☐ Drillhole / Borehole Construction Type: ☐ Drilled ☐ Driven (S ☐ Other (Specify)	andpoint) Dug	Did Sea Did Mat	sing Cut Off Be ling Material Ri terial Settle Afte , Was Hole Reto	se to Surface?	Yes No Yes No Yes No Yes No Yes No
	Bedrock Casing Diameter (in.) 4.0	Cor	d Method of Pla nductor Pipe - G eened & Poured sentonite Chips)	Other (E	tor Pipe - Pumped Explain)
(From ground surface) Lower Drillhole Diameter (in.) 3.0	Casing Depth (ft.) 5.0	Ner	Materials	t monit	nonitoring wells and coring well boreholes only
Was Well Annular Space Grouted? If Yes, To What Depth? Depth to Water (Feet) N/A	Yes No Unknown N/A Feet	Coi	d-Cement (Connerete y-Sand Slurry ntonite-Sand Slu pped Bentonite	nrry _	Bentonite Chips Granular Bentonite Bentonite-Cement Grout Bentonite - Sand Slurry
(5) Sealing Material	Used	From (Ft.)	To (Ft.)	No. Yards, Sacks, Sealant, or Volume	Mix Ratio or Mud Weight
Quik-Gro	ut	Surface	50.9	25 gallons	
(6) Comments					
(7) Name of Person or Firm Doing Sealing Work AECOM Technical Services, Inc. Signature of Person Doing Work		nent			
	Telephone Number 120-468-1978				
Green Bay, Wisconsin 54311					

AECOM General Notes

Drilling and Sampling Symbols:

ST: Shelby Tube-2" O.D. (Unless otherwise noted) PA: Power Auger DB: Diamond Bit-NX, BX, AX RB: Rock Bit AS: Auger Sample JS: Jar Sample PM: Pressuremeter Test VS: Vane Shear OS: Optotyberg Sampler GS: Giddings Sampler	SS: Split Spoon - 1-3/8" I.D. 2" O.D. (Unless otherwise noted)	HS: Hollow Stem Auger
DB : Diamond Bit-NX, BX, AX RB : Rock Bit BS : Bulk Sample JS : Jar Sample PM : Pressuremeter Test VS : Vane Shear GS : Giddings Sampler	ST: Shelby Tube-2" O.D. (Unless otherwise noted)	WS : Wash Sample
AS : Auger Sample JS : Jar Sample VS : Vane Shear BS : Bulk Sample PM : Pressuremeter Test GS : Giddings Sampler	PA: Power Auger	FT: Fish Tail
JS : Jar Sample VS : Vane Shear PM : Pressuremeter Test GS : Giddings Sampler	DB : Diamond Bit-NX, BX, AX	RB: Rock Bit
VS : Vane Shear GS : Giddings Sampler	AS : Auger Sample	BS : Bulk Sample
0 1	JS : Jar Sample	PM : Pressuremeter Test
OS : Optorborg Campler	VS : Vane Shear	GS : Giddings Sampler
OS : Osterberg Sampler	OS : Osterberg Sampler	

Standard "N" Penetration: Blows per foot of a 140 pound hammer falling 30 inches on a 2 inch O.D. split spoon sampler, except where otherwise noted.

Water Level Measurement Symbols:

WL: Water Level	WCI: Wet Cave In
WS: While Sampling	DCI : Dry Cave In
WD: While Drilling	BCR: Before Casing Removal
AB : After Boring	ACR: After Casing Removal

Water levels indicated on the boring logs are the levels measured in the boring at the time indicated. In pervious soils, the indicated elevations are considered reliable groundwater levels. In impervious soils, the accurate determination of groundwater elevations may not be possible, even after several days of observations; additional evidence of groundwater elevations must be sought.

Gradation Description and Terminology:

Coarse grained or granular soils have more than 50% of their dry weight retained on a #200 sieve; they are described as boulders, cobbles, gravel or sand. Fine grained soils have less than 50% of their dry weight retained on a #200 sieve; they are described as clay or clayey silt if they are cohesive and silt if they are non-cohesive. In addition to gradation, granular soils are defined on the basis of their relative in-place density and fine grained soils on the basis of their strength or consistency and their plasticity.

Major Component of Sample	Size Range	Description of Other Components Present in Sample	Percent Dry Weight
Boulders	Over 8 in. (200 mm)	Trace	1-9
Cobbles	8 inches to 3 inches (200 mm to 75 mm)	Little	10-19
Gravel	3 inches to #4 sieve (75 mm to 4.76 mm)	Some	20-34
Sand	#4 to #200 sieve (4.76 mm to 0.074 mm)	And	35-50
Silt	Passing #200 sieve (0.074 mm to 0.005 mm)		
Clay	Smaller than 0.005 mm		

Consistency of Cohesive Soils:

Relative Density of Granular Soils:

Unconfined Compressive Strength, Qu, tsf	Consistency	N-Blows per foot	Relative Density
<0.25	Very Soft	0 - 3	Very Loose
0.25 - 0.49	Soft	4 - 9	Loose
0.50 - 0.99	Medium (firm)	10 - 29	Medium Dense
1.00 - 1.99	Stiff	30 - 49	Dense
2.00 - 3.99	Very Stiff	50 - 80	Very Dense
4.00 - 8.00	Hard	>80	Extremely Dense
>8.00	Very Hard		

AECOM Field and Laboratory Procedures

Field Sampling Procedures

Auger Sampling (AS)

In this procedure, soil samples are collected from cuttings off of the auger flights as they are removed from the ground. Such samples provide a general indication of subsurface conditions; however, they do not provide undisturbed samples, nor do they provide samples from discrete depths.

Split-Barrel Sampling (SS) - (ASTM Standard D-1586-99)

In the split-barrel sampling procedure, a 2-inch O.D. split barrel sampler is driven into the soil a distance of 18 inches by means of a 140-pound hammer falling 30 inches. The value of the Standard Penetration Resistance is obtained by counting the number of blows of the hammer over the final 12 inches of driving. This value provides a qualitative indication of the in-place relative density of cohesionless soils. The indication is qualitative only, however, since many factors can significantly affect the Standard Penetration Resistance Value, and direct correlation of results obtained by drill crews using different rigs, drilling procedures, and hammer-rod-spoon assemblies should not be made. A portion of the recovered sample is placed in a sample jar and returned to the laboratory for further analysis and testing.

Shelby Tube Sampling Procedure (ST) - ASTM Standard D-1587-94

In the Shelby tube sampling procedure, a thin-walled steel seamless tube with a sharp cutting edge is pushed hydraulically into the soil and a relatively undisturbed sample is obtained. This procedure is generally employed in cohesive soils. The tubes are identified, sealed and carefully handled in the field to avoid excessive disturbance and are returned to the laboratory for extrusion and further analysis and testing.

Giddings Sampler (GS)

This type of sampling device consists of 5-foot sections of thin-wall tubing which are capable of retrieving continuous columns of soil in 5-foot maximum increments. Because of a continuous slot in the sampling tubes, the sampler allows field determination of stratification boundaries and containerization of soil samples from any sampling depth within the 5-foot interval.

AECOM Field and Laboratory Procedures

Subsurface Exploration Procedures

Hand-Auger Drilling (HA)

In this procedure, a sampling device is driven into the soil by repeated blows of a sledge hammer or a drop hammer. When the sampler is driven to the desired sample depth, the soil sample is retrieved. The hole is then advanced by manually turning the hand auger until the next sampling depth increment is reached. The hand auger drilling between sampling intervals also helps to clean and enlarge the borehole in preparation for obtaining the next sample.

Power Auger Drilling (PA)

In this type of drilling procedure, continuous flight augers are used to advance the boreholes. They are turned and hydraulically advanced by a truck, trailer or track-mounted unit as site accessibility dictates. In auger drilling, casing and drilling mud are not required to maintain open boreholes.

Hollow Stem Auger Drilling (HS)

In this drilling procedure, continuous flight augers having open stems are used to advance the boreholes. The open stem allows the sampling tool to be used without removing the augers from the borehole. Hollow stem augers thus provide support to the sides of the borehole during the sampling operations.

Rotary Drilling (RB)

In employing rotary drilling methods, various cutting bits are used to advance the boreholes. In this process, surface casing and/or drilling fluids are used to maintain open boreholes.

Diamond Core Drilling (DB)

Diamond core drilling is used to sample cemented formations. In this procedure, a double tube (or triple tube) core barrel with a diamond bit cuts an annular space around a cylindrical prism of the material sampled. The sample is retrieved by a catcher just above the bit. Samples recovered by this procedure are placed in sturdy containers in sequential order.

AECOM Laboratory Procedures

Water Content (Wc)

The water content of a soil is the ratio of the weight of water in a given soil mass to the weight of the dry soil. Water content is generally expressed as a percentage.

Hand Penetrometer (Qp)

In the hand penetrometer test, the unconfined compressive strength of a soil is determined, to a maximum value of 4.5 tons per square foot (tsf) or 7.0 tsf depending on the testing device utilized, by measuring the resistance of the soil sample to penetration by a small, spring-calibrated cylinder. The hand penetrometer test has been carefully correlated with unconfined compressive strength tests, and thereby provides a useful and a relatively simple testing procedure in which soil strength can be quickly and easily estimated.

Unconfined Compression Tests (Qu)

In the unconfined compression strength test, an undisturbed prism of soil is loaded axially until failure or until 20% strain has been reached, whichever occurs first.

Dry Density (γd)

The dry density is a measure of the amount of solids in a unit volume of soil. Use of this value is often made when measuring the degree of compaction of a soil.

Classification of Samples

In conjunction with the sample testing program, all soil samples are examined in our laboratory and visually classified on the basis of their texture and plasticity in accordance with the AECOM Soil Classification System which is described on a separate sheet. The soil descriptions on the boring logs are derived from this system as well as the component gradation terminology, consistency of cohesive soils and relative density of granular soils as described on a separate sheet entitled "AECOM General Notes". The estimated group symbols included in parentheses following the soil descriptions on the boring logs are in general conformance with the Unified Soil Classification System (USCS) which serves as the basis of the AECOM Soil Classification System.

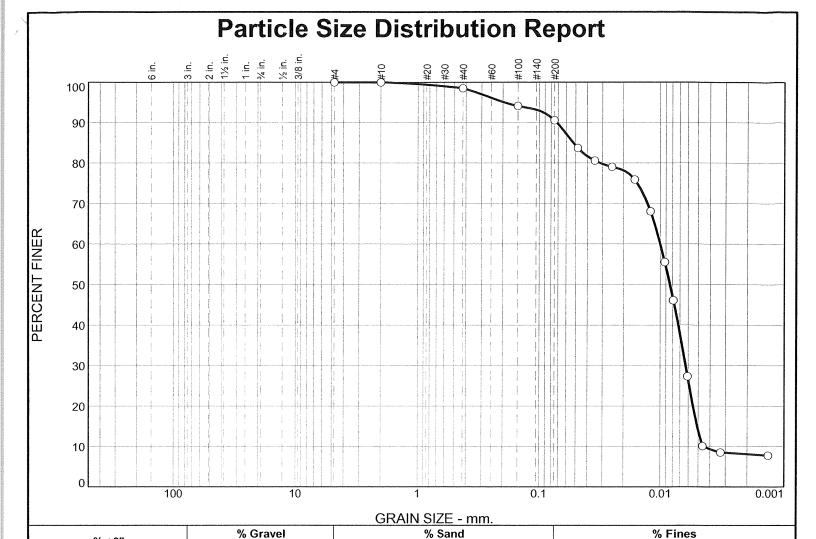
AECOM Standard Boring Log Procedures

In the process of obtaining and testing samples and preparing this report, standard procedures are followed regarding field logs, laboratory data sheets and samples.

Field logs are prepared during performance of the drilling and sampling operations and are intended to essentially portray field occurrences, sampling locations and procedures.

Samples obtained in the field are frequently subjected to additional testing and reclassification in the laboratory by experienced geotechnical engineers, and as such, differences between the field logs and the final logs may exist. The engineer preparing the report reviews the field logs, laboratory test data and classifications, and using judgment and experience in interpreting this data, may make further changes. It is common practice in the geotechnical engineering profession not to include field logs and laboratory data sheets in engineering reports, because they do not represent the engineer's final opinions as to appropriate descriptions for conditions encountered in the exploration and testing work. Results of laboratory tests are generally shown on the boring logs or are described in the text of the report, as appropriate.

Samples taken in the field, some of which are later subjected to laboratory tests, are retained in our laboratory for sixty days and are then discarded unless special disposition is requested by our client. Samples retained over a long period of time, even in sealed jars, are subject to moisture loss which changes the apparent strength of cohesive soil, generally increasing the strength from what was originally encountered in the field. Since they are then no longer representative of the moisture conditions initially encountered, observers of these samples should recognize this factor.



AECOM Soil Classification System (1)

_		•	_	1	T					
	Ma Divis	jor ions	Group Symbols	Typical Names		Laboratory Classification	on Criteria			
	el coarse fraction . 4 sieve size)	Clean gravel tle or no fines)	G₩	Well-graded, gravel, gravel-sand mixtures, little or no fines	E (5) 80	$C_U = \frac{D_{20}}{D_{10}}$ greater than 4; $C_C = \frac{(D_{30})^2}{D_{10} \times D_{80}}$ between 1 & 3				
200 sieve size)) (Cit	GP	Poorly graded gravel, gravel—sand mixtures, little or no fines	curve. 200 siew dual symb	Not meeting all gradation requirements for GW				
No. 200 si	Gravel (More than half of is larger than No.	Gravel with fines (Appreciable amount of fines)	GM	Silty gravel, gravel-sand- silt mixtures	grain—size curve. wer than No. 200 sieve ws: requiring dual symbols ⁽³⁾	Atterberg limits below "A" line or Pl less than 4	Above "A" line with PI between 4 and 7 are borderline			
ned soils	(More t is larg	Gravel with fines (Appreciable amour of fines)	GC	Clayey gravel, gravel-sand- clay mixtures	avel from gitton smalle ad as follow SW, SP , SW, SP , SM, SC , SM, SC , SM , Atterberg limits above "A" of second to the control of the control	cases requiring use of dual symbols				
Coarse—grained soils of material is <i>larger</i> than No.	roction s size)	Clean sand (Little or no fines)	SW	Well—graded sand, gravelly sand, little or no fines	Determine percentages of sand and gravel from grain-size curve. Depending on percentage of fines (fraction smaller than No. 200 sieve size), coarse-grained soils are classified as follows: Less than 5 percent CW, GP, SW, SP More than 12 percent CM, GC, SM, SC 5 to 12 percent Bordenline cases requiring dual symba 5 to 12 percent Bordenline cases requiring dual symba	$C_{u} = \frac{D_{00}}{D_{10}}$ greater than 6; C_{c}	= (D ₃₀) ² D ₁₀ x D ₈₀ between 1 & 3			
	nd of coarse f No. 4 sieve	Clean (Little or	SP	Poorly graded sand, gravelly sand, little or no fines	tages of so centage of ined soils or reent	Not meeting all gradat	cion requirements for SW			
(More than half	Sand (More than half of coarse fraction is smaller than No. 4 sieve size)	Sand with fines (Appreciable amount of fines)	SM	Silty sand, sand—silt mixtures	ine percent ling on per coarse—gra than 5 pe than 12 p	Atterberg limits below "A" line or PI less than 4	Limits plotting in hatched zone with Pl between 4 and 7			
		Sand with fi (Appreciable ar of fines)	sc	Clayey sand, sand-clay mixtures	Determ Dapand size), (Less More	Atterberg limits above "A" line or PI greater than 7	are borderline cases requiring use of dual symbols			
[56]	Silt and clay (Liquid limit less than 50)		ML	Inorganic silt and very fine sand, rock flour, silty or clayey fine sand or clayey silt with slight plasticity		Plasticity Chart (2) For classification of fine–grained				
200 sieve size)			CL	Inorganic clay of low to medium plasticity, gravelly clay, sandy clay, silty clay, lean clay	50 - Atterbe	soils and fine fraction of coarse—grained soils.				
groined soils is smaller than No.	<u> </u>	(Liquid lin	OL	Organic silt and organic silty clay of low plasticity	requirir	borderline classifications requiring use of dual symbols.				
	á	than 50)	мн	Inorganic silt, micaceous or diatomaceous fine sandy or silty soils, elastic silt	x Equation Pi=0.7	3 (LL-20)	MH or OH			
Fine- of material	Silt and ok	mit greater	СН	Inorganic clay of high plasticity, fat clay	<u>ਵ</u> 20	CL or OL				
(More than half o		Inorganic silt, micaceous or diatomaceous fine sandy or silty soils, elastic silt Inorganic clay of high plasticity, fat clay Inorganic clay of medium to high plasticity, organic silt Inorganic clay of medium to high plasticity, organic silt Inorganic clay of medium to high plasticity, organic silt Inorganic clay of medium to high plasticity, organic silt Inorganic clay of medium to high plasticity, organic silt Inorganic clay of medium to high plasticity, organic silt Inorganic clay of medium to high plasticity, organic silt Inorganic silt		7	CL-ML ML or OL					
(More	Highly	organic solls	РТ	Peat and other highly organic soil	0 10	20 30 40 50 Liquid Lir	60 70 80 90 100 πit (LL)			

- 1. See AECOM General Notes for component gradation terminology, consistency of cohesive soils and relative density of granular soils.
- 2. Reference: Unified Soil Classification Systems
- 3. Borderline classifications, used for soils possessing characteristics of two groups, are designated by combinations of group symbols. For example: GW-GC, well-graded gravel-sand mixture with clay binder.

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
#4	100.0		
#10	100.0		
#40	98.5		
#100	94.1		
#200	90.6		

Coarse

0.0

Fine

0.0

Coarse

0.0

Medium

1.5

Fine

7.9

Material Description LIGHT GRAY SILTY CLAY, TRACE SAND						
PL= 14	Atterberg Limits LL= 22	PI= 8				
D ₉₀ = 0.0716 D ₅₀ = 0.0084 D ₁₀ = 0.0045	Coefficients D ₈₅ = 0.0523 D ₃₀ = 0.0063 C _u = 2.21	D ₆₀ = 0.0100 D ₁₅ = 0.0051 C _c = 0.88				
USCS= CL	Classification AASHT	O= A-4(5)				
	Remarks					

Silt

76.7

Clay

13.9

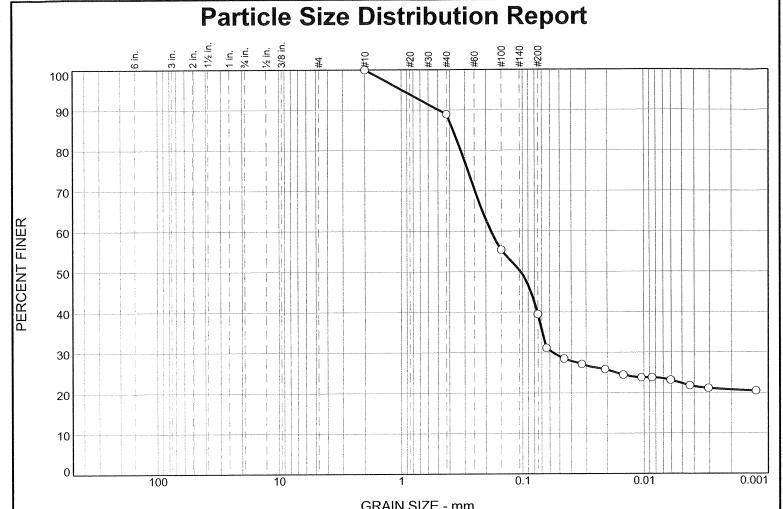
(no specification provided)

Source of Sample: B-1-1 **Sample Number:** B-1-1 S-5

% +3"

0.0

Depth: 8'-10'


Client: IPR-GDF SUEZ **Project:** COLETO CREEK

Project No: 60225561

Figure

Date: 12/09/11

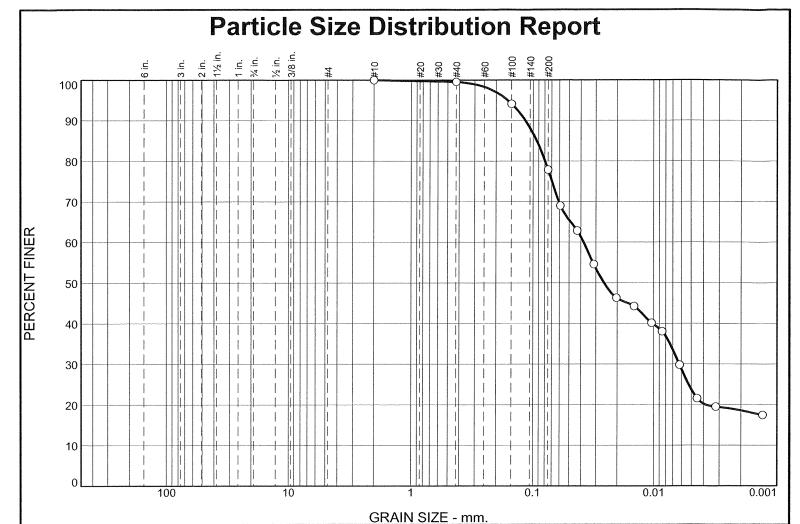
AECOM

GRAIN SIZE - IIIII.							
	% Gi	ravel	% Sand			% Fines	
% +3"	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay
0.0	0.0	0.0	0.0	11.0	49.5	17.1	22.4

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
#10	100.0		
#40	89.0		
#100	55.5		
#200	39.5		
	•		
L			

<u>Material Description</u> CLAYEY FINE TO MEDIUM SAND, BROWNISH GRAY							
PL= 14	Atterberg Limits LL= 38	PI= 24					
D ₉₀ = 0.4902 D ₅₀ = 0.1036 D ₁₀ =	Coefficients D ₈₅ = 0.3732 D ₃₀ = 0.0564 C _u =	D ₆₀ = 0.1816 D ₁₅ = C _c =					
USCS= SC	Classification AASHT	O= A-6(4)					
	<u>Remarks</u>						

Source of Sample: B-1-1 Sample Number: B-1-1 S-11


Depth: 20'-22'

Date: 12/9/11

Client: IPR-GDF SUEZ **Project:** COLETO CREEK

Project No: 60225561

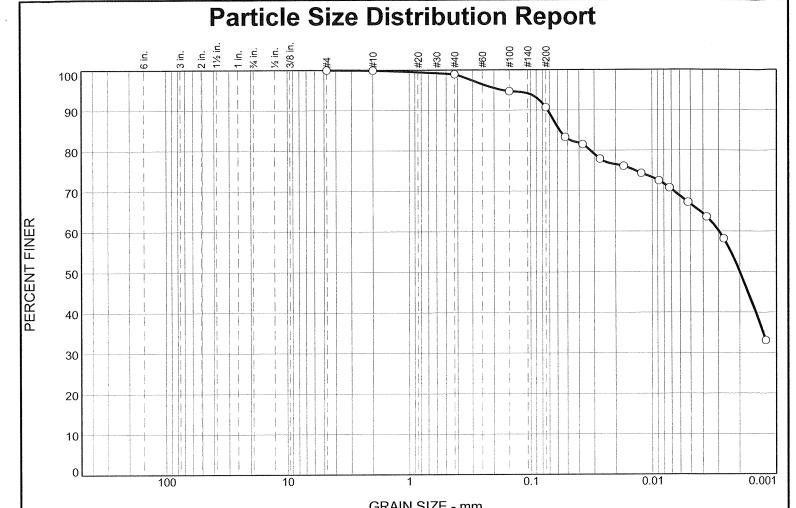
% +3"		% Gravel		% Sand			% Fines		
	% +3	· · ·	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay
	0.0		0.0	0.0	0.0	0.4	21.7	54.2	23.7
	SIEVE	PERCENT	SPEC.*	PASS	6?		Materia	I Description	

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
#10	100.0		
#40	99.6		
#100	94.1		
#200	77.9		

	Material Description						
SILTY CLAY, S	OME SAND, LIGHT	ΓGRAY					
PL= 17	Atterberg Limits LL= 42	PI= 25					
	Cffi-i-u-t-						
$D_{00} = 0.1156$	Coefficients D ₈₅ = 0.0934	$D_{60} = 0.0380$					
D ₉₀ = 0.1156 D ₅₀ = 0.0258 D ₁₀ =	$D_{30}^{30} = 0.0062$	D15=					
D ₁₀ =	C _u =	C _C =					
	Classification						
USCS= CL	AASHT	O= A-7-6(18)					
	<u>Remarks</u>						

Source of Sample: B-1-1 **Sample Number:** B-1-1 S-34

Depth: 90'-90.4'


Client: IPR-GDF SUEZ
Project: COLETO CREEK

Project No: 60225561

Figure

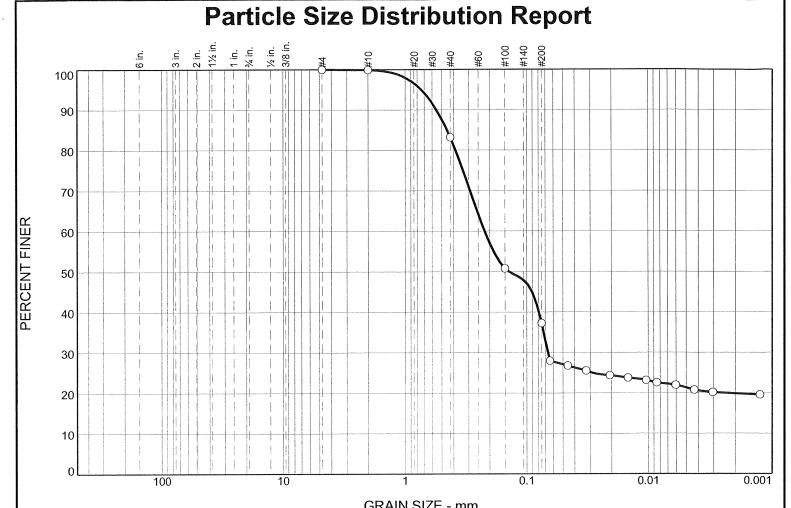
Date: 12/15/11

			G	KAIN SIZE -	111111.		
0/ - 00	% Gravel		% Sand			% Fines	
% +3"	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay
0.0	0.0	0.0	0.1	1.0	8.2	23.9	66.8

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
#4	100.0		
#10	99.9		
#40	98.9		
#100	94.7		
#200	90.7		

M 4 d I D a selection							
<u>Material Description</u> SILTY CLAY, TRACE SAND, BROWN							
PL= 28	Atterberg Limits	PI= 51					
D ₉₀ = 0.0724 D ₅₀ = 0.0020 D ₁₀ =	Coefficients D ₈₅ = 0.0576 D ₃₀ = C _u =	D ₆₀ = 0.0030 D ₁₅ = C _c =					
USCS= CH	Classification AASHT	TO= A-7-6(53)					
	<u>Remarks</u>						

Source of Sample: B-1-1 Sample Number: B-1-1 S-40


Depth: 120'-121'

Date: 12/9/11

Client: IPR-GDF SUEZ
Project: COLETO CREEK

Project No: 60225561

GRAIN SIZE - IIIII.							
% +3"	% G	ravel	vel % Sand			% Fines	
	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay
0.0	0.0	0.0	0.1	16.7	45.9	15.9	21.4

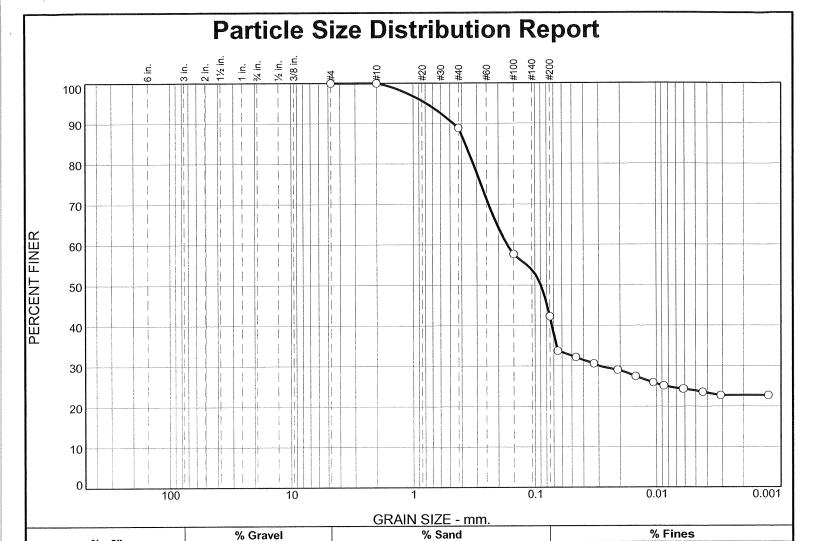
SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
#4	100.0		
#10	99.9		
#40	83.2		
#100	50.8		
#200	37.3		

	Material Description						
CLAYEY FINE	CLAYEY FINE TO MEDIUM SAND, GRAYISH BROWN						
	A44 . It I ! ! (!						
PL= 14	Atterberg Limits LL= 38	PI= 24					
	Coefficients						
$D_{00} = 0.5520$	<u>Coefficients</u> D ₈₅ = 0.4512	D ₆₀ = 0.2202					
D ₉₀ = 0.5520 D ₅₀ = 0.1389	$D_{30}^{30} = 0.0666$	D15=					
$D_{10}=$	C _u =	C _C =					
11 000 ac	Classification	-0 + ((0)					
USCS= SC	AASHI	O = A-6(3)					
<u>Remarks</u>							

Source of Sample: B-2-1 **Sample Number:** B-2-1 S-6

Depth: 10'-12'

Client: IPR-GDF SUEZ


Project: COLETO CREEK

Project No: 60225561

Figure

Date: 12/9/11

Medium

11.1

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
#4	100.0		
#10	100.0		
#40	88.9		
#100	57.7		
#200	42.3		
L			

Coarse

0.0

Fine

0.0

Coarse

0.0

<u>Material Description</u> CLAYEY FINE TO MEDIUM SAND, GRAYISH BROWN							
PL= 13	Atterberg Limits	PI= 28					
D ₉₀ = 0.4679 D ₅₀ = 0.0893 D ₁₀ =	Coefficients D ₈₅ = 0.3722 D ₃₀ = 0.0293 C _u =	D ₆₀ = 0.1697 D ₁₅ = C _c =					
USCS= SC	USCS= SC Classification AASHTO= A-7-6(6)						
	<u>Remarks</u>						

Fine

46.6

Silt

18.4

Clay

23.9

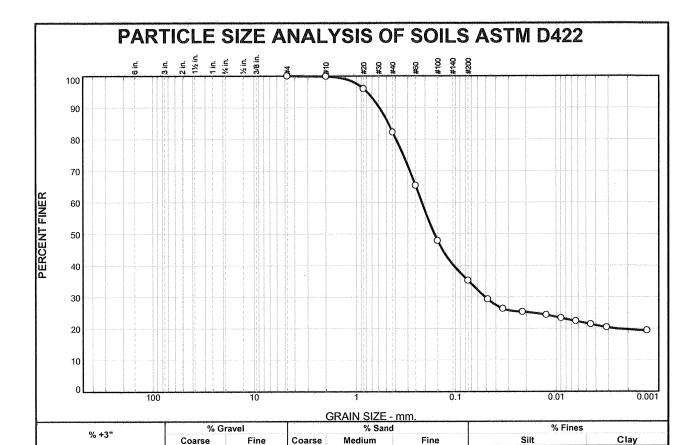
(no specification provided)

Source of Sample: B-2-1 **Sample Number:** B-2-1 S-10

% +3"

0.0

Depth: 18'-20'


Client: IPR-GDF SUEZ
Project: COLETO CREEK

Project No: 60225561

Figure

Date: 12/9/11

17.7

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
#4	100.0		
#10	99.9		
#20	96.0		
#40	82.2		
#60	65.3		1
#100	47.8		
#200	35.2		
			1

0.0

0.0

0.1

Material Description Clayey F-M Sand Little Silt - Brownish Gray						
PL= 18	Atterberg Limits LL= 42	PI= 24				
D ₉₀ = 0.5889 D ₅₀ = 0.1616 D ₁₀ =	Coefficients D85= 0.4733 D30= 0.0509 Cu=	D ₆₀ = 0.2159 D ₁₅ = C _c =				
USCS= SC	Classification					
<u>Remarks</u>						

13.6

47.0

(no specification provided)

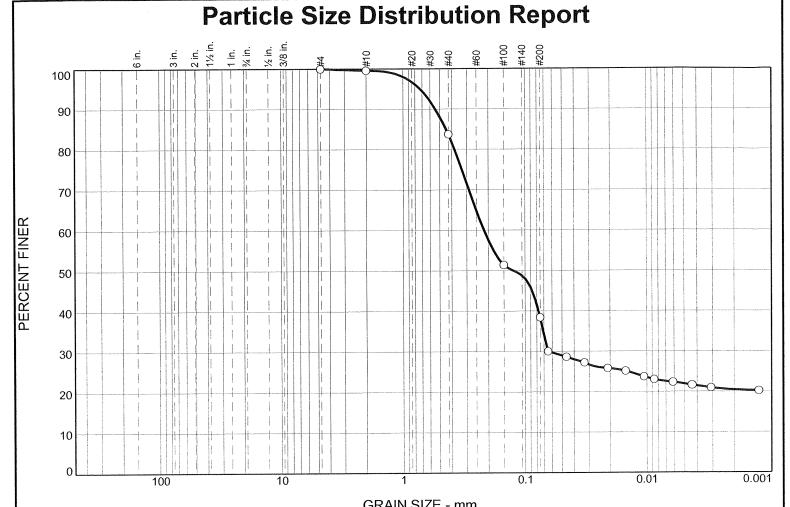
Source of Sample: Boring 2-1 **Sample Number:** S-14

0.0

Depth: 26.0-28.0

Date: 12/7/2011

21.6


Client: IPR-GDP Suez

Project: Coleto Creek Facility

Project No: 60225561

Tested By: BCM

Checked By: WPQ

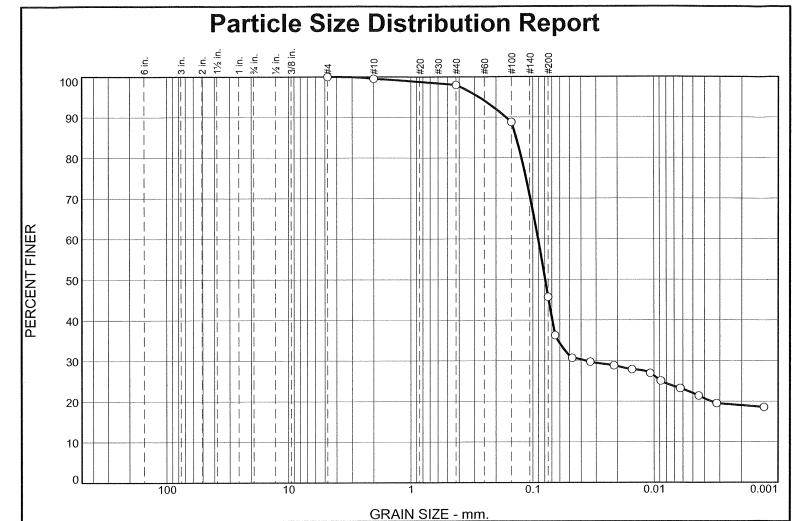
GRAIN SIZE - IIIII.							
0/ 04	% Gr	ravel	% Sand		% Fines		
% +3"	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay
0.0	0.0	0.0	0.4	15.8	45.4	16.4	22.0

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
#4	100.0		
#10	99.6		
#40	83.8		
#100	51.4		
#200	38.4		

ľ	Material Description						
CLAYEY FINE	CLAYEY FINE TO MEDIUM SAND, GRAY						
	Att all and I had						
PL= 14	Atterberg Limits LL= 29	PI= 15					
D ₉₀ = 0.5414 D ₅₀ = 0.1251 D ₁₀ =	Coefficients D ₈₅ = 0.4433 D ₃₀ = 0.0637 C _u =	D ₆₀ = 0.2165 D ₁₅ = C _c =					
USCS= SC	USCS= SC Classification AASHTO= A-6(2)						
<u>Remarks</u>							

Source of Sample: B-2-1 **Sample Number:** B-2-1 S-17

Depth: 32'-34'


Client: IPR-GDF SUEZ
Project: COLETO CREEK

Project No: 60225561

Date: 12/9/11

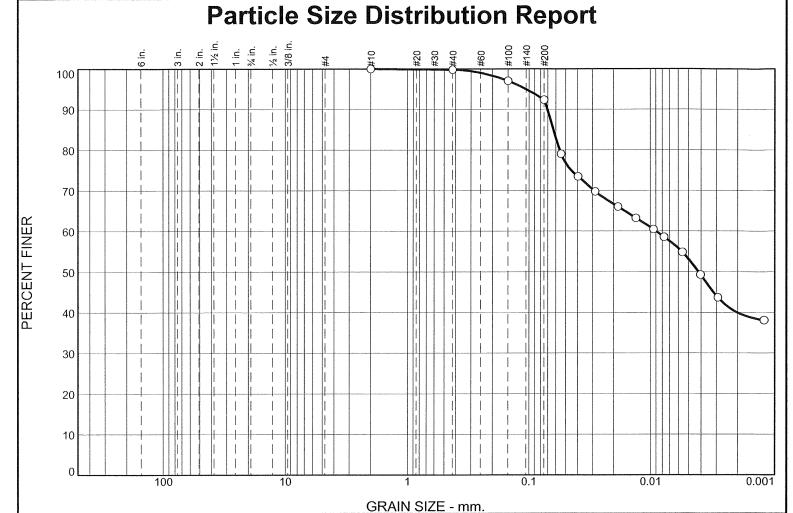
⁽no specification provided)

0/ .00	% Gr	% Gravel		% Sand		% Fines	
% +3"	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay
0.0	0.0	0.0	0.5	1.5	52.3	23.7	22.0

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
#4	100.0		
#10	99.5		
#40	98.0		
#100	88.8		
#200	45.7		
1			
-			

	Material Descripti on SAND, LIGHT GRA	
PL= 17	Atterberg Limits	PI= 11
D ₉₀ = 0.1663 D ₅₀ = 0.0793 D ₁₀ =	Coefficients D85= 0.1371 D30= 0.0362 Cu=	D ₆₀ = 0.0906 D ₁₅ = C _c =
USCS= SC	Classification AASH1	ΓO= A-6(2)
	<u>Remarks</u>	

Source of Sample: B-2-1 **Sample Number:** B-2-1 S-27


Depth: 55.0'-56.6'

Date: 12/15/11

Client: IPR-GDF SUEZ
Project: COLETO CREEK

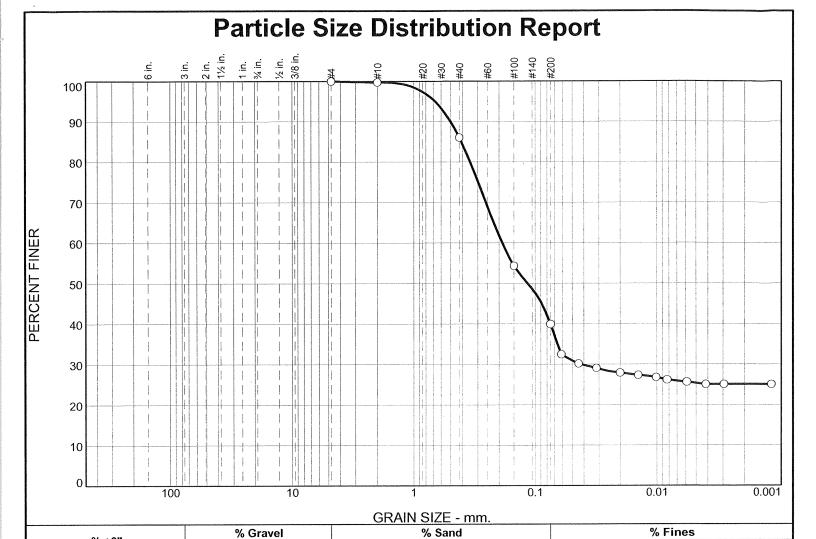
Project No: 60225561

% +3" Coarse Fine Coarse Medium Fine Silt	
	Clay
0.0 0.0 0.0 0.0 0.2 7.4 39.2	53.2

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
#10	100.0		
#40	99.8		
#100	97.0		
#200	92.4		

	Material Description TRACE SAND, LIGH	on IT GRAYISH BROWN
PL= 25	Atterberg Limits	PI= 34
D ₉₀ = 0.0705 D ₅₀ = 0.0042 D ₁₀ =	Coefficients D ₈₅ = 0.0630 D ₃₀ = C _u =	D ₆₀ = 0.0090 D ₁₅ = C _c =
USCS= CH	Classification AASHT	O= A-7-6(35)
	<u>Remarks</u>	

Source of Sample: B-2-1 **Sample Number:** B-2-1 S-33


Depth: 85.0'-86.5'

Date: 12/15/11

Client: IPR-GDF SUEZ
Project: COLETO CREEK

Project No: 60225561

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
. #4	100.0		
#10	99.7		
#40	86.1		
#100	54.4		
#200	40.0		
		L	

Coarse

0.0

Fine

0.0

Coarse

0.3

Medium

13.6

Material Descriptic TO MEDIUM SANI	
Atterberg Limits	PI= 29
Coefficients D85= 0.4085 D30= 0.0416 Cu=	D ₆₀ = 0.1882 D ₁₅ = C _c =
Classification AASHT	O= A-7-6(6)
<u>Remarks</u>	
	Atterberg Limits LL= 44 Coefficients D85= 0.4085 D30= 0.0416 Cu= Classification AASHT

Fine

46.1

Silt

14.6

Clay

25.4

(no specification provided)

Source of Sample: B-3-1 **Sample Number:** B-3-1 S-9

% +3"

0.0

Depth: 16.0'-17.8'

Date: 12/9/11

AECOM

Client: IPR-GDF SUEZ **Project:** COLETO CREEK

Project No: 60225561

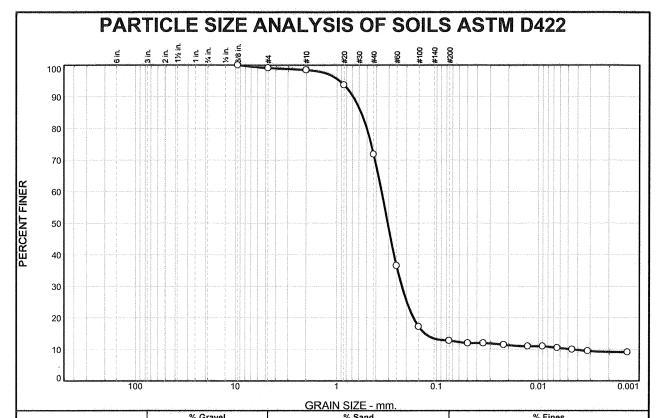
GRAIN SIZE - mm.							
0/ +211	% Gı	avel		% Sand	t	% Fine	es
% +3"	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay
0.0	0.0	0.0	0.4	20.1	44.7	15.4	19.4

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
#4	100.0		
#10	99.6		
#40	79.5		
#100	46.5		
#200	34.8		

	Material Description TO MEDIUM SANE	
CLATETTINE	TO MEDIOM SAND	, DAKK DROWN
PL= 13	Atterberg Limits LL= 35	PI= 22
D ₉₀ = 0.6299 D ₅₀ = 0.1856 D ₁₀ =	Coefficients D ₈₅ = 0.5094 D ₃₀ = 0.0701 C _u =	D ₆₀ = 0.2547 D ₁₅ = C _c =
USCS= SC	Classification AASHT	O= A-2-6(2)
	Remarks	

* (no specification provided)

Source of Sample: B-3-1 **Sample Number:** B-3-1 S-10


Depth: 18'-20'

Client: IPR-GDF SUEZ
Project: COLETO CREEK

Project No: 60225561

Date: 12/9/11

AECOM

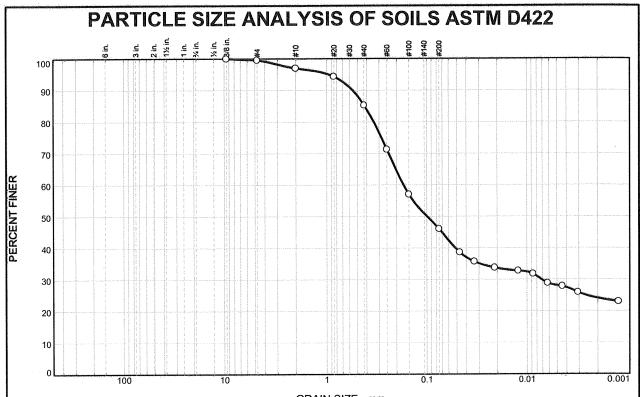
% +3		% Grave	31	1	% Sand		% rine	S
 % +3		Coarse	Fine	Coarse	Medium	Fine	Silt	Clay
0.0		0.0	0.9	0.6	26.7	59.0	2.7	10.1
SIEVE SIZE	PERCENT FINER	SPEC.* PERCENT	PAS		F-M San		al Description e Silt - Brownish Gray	
.375	100.0					-		

SIEVE	PERCENT	SPEC.	PASS?
SIZE	FINER	PERCENT	(X=NO)
.375	100.0		
#4	99.1		
#10	98.5		
#20	93.7		
#40	71.8		
#60	36.5		
#100	17.2		
#200	12.8		
	-		
	l		

	Atterberg Limits	
PL= 16	LL= 27	PI= 11
	Coefficients	
$D_{90} = 0.6879$	D ₈₅ = 0.5721 D ₃₀ = 0.2214	D ₆₀ = 0.3538 D ₁₅ = 0.1304 C _c = 29.98
D ₅₀ = 0.3070 D ₁₀ = 0.0046	$C_u^{30} = 76.58$	$C_{c}^{15} = 29.98$
	Classification	_
USCS= SC	AASHTO	O= A-2-6(0)
	Remarks	

Source of Sample: Boring 4-1 **Sample Number:** S-7

Depth: 12.0-14.0


Date: 12/7/11

Client: IPR-GDP Suez
Project: Coleto Creek Facility

Project No: 60225561

Tested By: BCM Checked By: WPQ

			(GRAIN SIZE -	mm.			
% +3"	% Gr	avel	% Sand			% Fines		
	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay	
0.0	0.0	0.4	2.6	11.8	39.2	17.9	28.1	

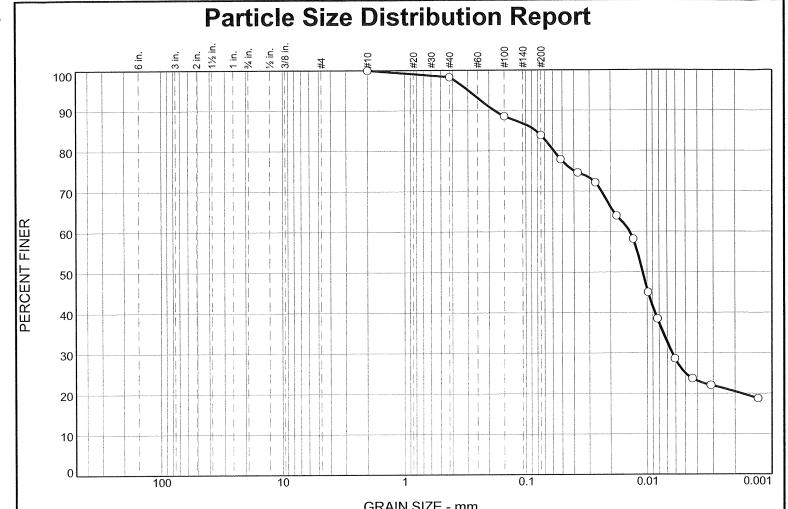
SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
.375	100.0		
#4	99.6		
#10	97.0		
#20	94.3		
#40	85.2		
#60	71.3		-
#100	57.0		
#200	46.0		

Clayey F-M Sand	Material Description Clayey F-M Sand Little Silt - Brownish Gray									
PL= 16	Atterberg Limits LL= 40	PI= 24								
D ₉₀ = 0.5576 D ₅₀ = 0.0994 D ₁₀ =	Coefficients D ₈₅ = 0.4206 D ₃₀ = 0.0071 C _U =	D ₆₀ = 0.1695 D ₁₅ = C _c =								
USCS= SC	Classification AASHT	O= A-6(7)								
	<u>Remarks</u>									

Source of Sample: Boring 4-1 **Sample Number:** S-13

Depth: 24.0-26.0

Date: 12/7/11



Client: IPR-GDP Suez
Project: Coleto Creek Facility

Project No: 60225561

Tested By: BCM

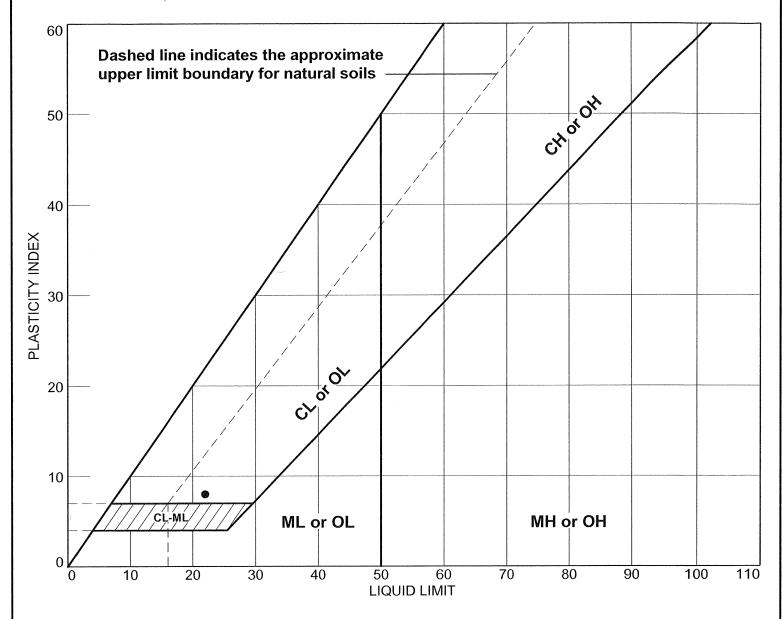
Checked By: WPQ

			G	MAIN SIZE -	111111.		
a	% Gr	avel		% Sand		% Fines	
% +3"	% +3" Coarse		Coarse	Medium	Fine	Silt	Clay
0.0	0.0	0.0	0.0	1.7	14.4	58.8	25.1

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
#10	100.0		
#40	98.3		
#100	88.6		
#200	83.9		
,			

	Material Description SILTY CLAY, LITTLE FINE TO MEDIUM SAND, WHITE AND GRAY									
PL= 18	Atterberg Limits LL= 30	PI= 12								
D ₉₀ = 0.1803 D ₅₀ = 0.0108 D ₁₀ =	Coefficients D ₈₅ = 0.0826 D ₃₀ = 0.0064 C _u =	D ₆₀ = 0.0138 D ₁₅ = C _c =								
USCS= CL	Classification AASHT	O= A-6(9)								
	<u>Remarks</u>									
		·								

Source of Sample: B-5-1 **Sample Number:** B-5-1 S-14

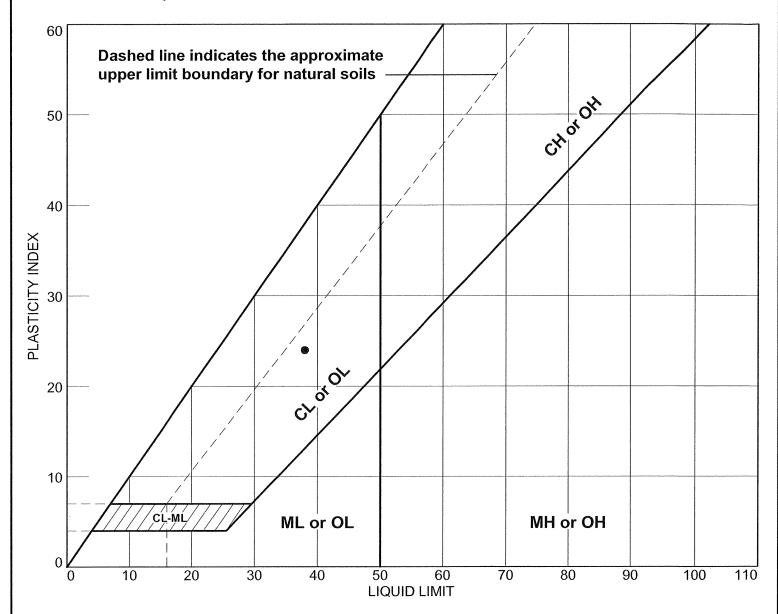

Depth: 26'-27'

Date: 12/9/11

AECOM

Client: IPR-GDF SUEZ
Project: COLETO CREEK

Project No: 60225561



	SOIL DATA										
SYMBOL	SOURCE	SAMPLE NO.	DEPTH	NATURAL WATER CONTENT (%)	PLASTIC LIMIT (%)	LIQUID LIMIT (%)	PLASTICITY INDEX (%)	USCS			
•	B-1-1	B-1-1 S-5	8'-10'		14	22	8	CL			

AECOM

Client: IPR-GDF SUEZ
Project: COLETO CREEK

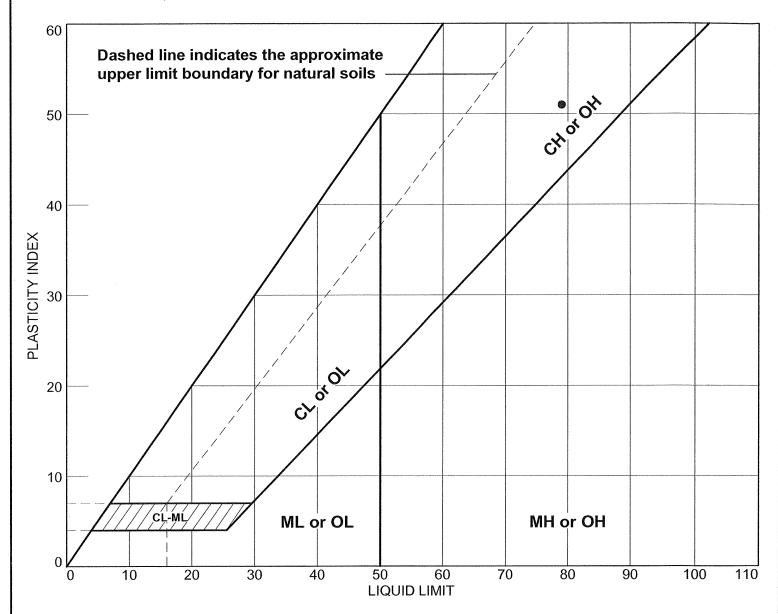
Project No.: 60225561

	SOIL DATA										
SYMBOL	SOURCE	SAMPLE NO.	DEPTH	NATURAL WATER CONTENT (%)	PLASTIC LIMIT (%)	LIQUID LIMIT (%)	PLASTICITY INDEX (%)	USCS			
•	B-1-1	B-1-1 S-11	20'-22'		14	38	24	SC			

Client: IPR-GDF SUEZ
Project: COLETO CREEK

Project No.: 60225561

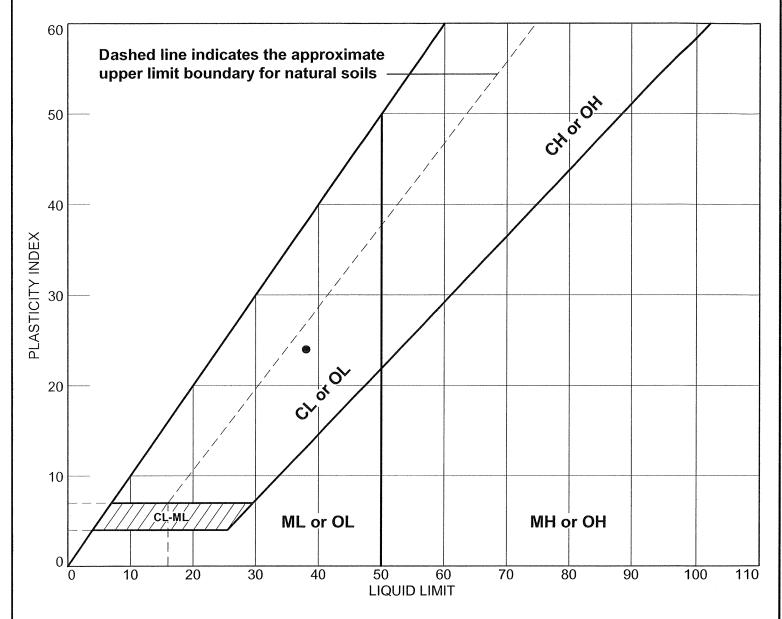
LIQUID AND PLASTIC LIMITS TEST REPORT Dashed line indicates the approximate upper limit boundary for natural soils (H) PLASTICITY INDEX ML or OL MH or OH


	SOIL DATA										
SYMBOL	SOURCE	SAMPLE NO.	DEPTH	NATURAL WATER CONTENT (%)	PLASTIC LIMIT (%)	LIQUID LIMIT (%)	PLASTICITY INDEX (%)	uscs			
•	B-1-1	B-1-1 S-34	90'-90.4'		17	42	25	CL			

LIQUID LIMIT

Client: IPR-GDF SUEZ
Project: COLETO CREEK

Project No.: 60225561

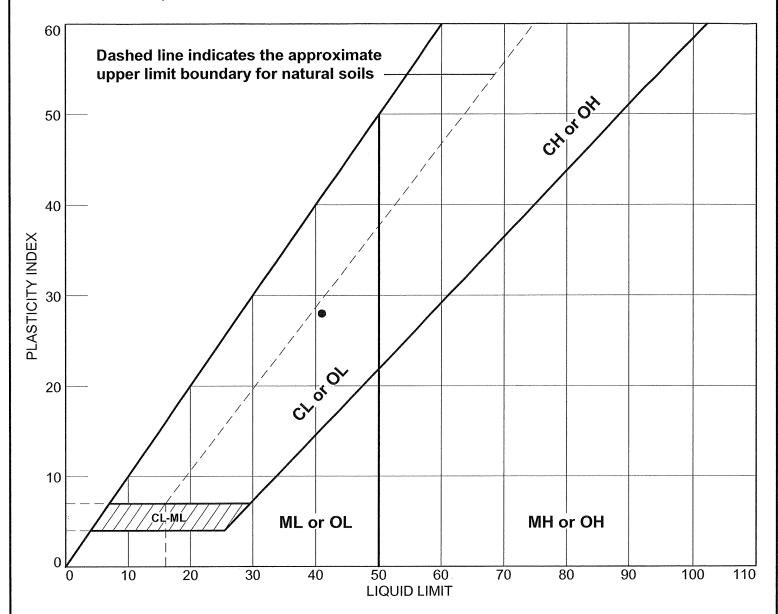


	SOIL DATA										
SYMBOL	SOURCE	SAMPLE NO.	DEPTH	NATURAL WATER CONTENT (%)	PLASTIC LIMIT (%)	LIQUID LIMIT (%)	PLASTICITY INDEX (%)	uscs			
•	B-1-1	B-1-1 S-40	120'-121'		28	79	51	СН			

AECOM

Client: IPR-GDF SUEZ
Project: COLETO CREEK

Project No.: 60225561

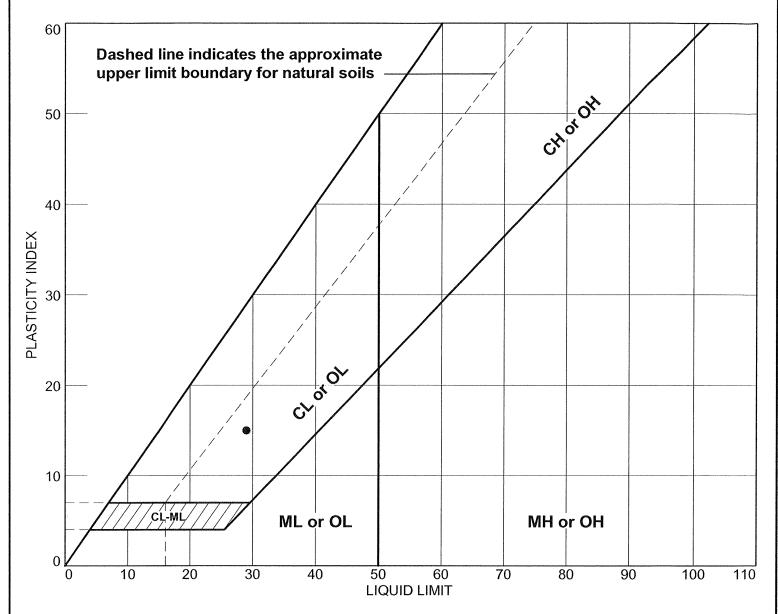


	SOIL DATA										
SYMBOL	SOURCE	SAMPLE NO.	DEPTH	NATURAL WATER CONTENT (%)	PLASTIC LIMIT (%)	LIQUID LIMIT (%)	PLASTICITY INDEX (%)	USCS			
•	B-2-1	B-2-1 S-6	10'-12'		14	38	24	SC			

AECOM

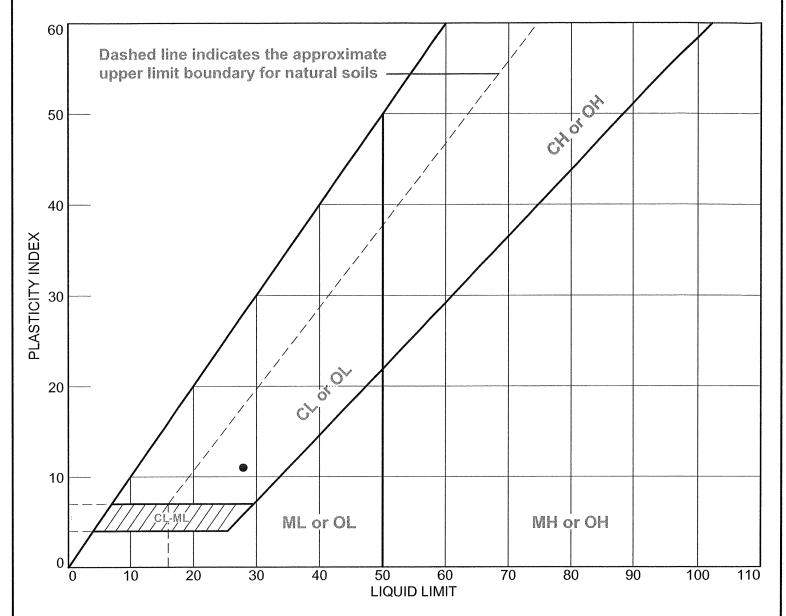
Client: IPR-GDF SUEZ
Project: COLETO CREEK

Project No.: 60225561


	SOIL DATA										
SYMBOL	SOURCE	SAMPLE NO.	DEPTH	NATURAL WATER CONTENT (%)	PLASTIC LIMIT (%)	LIQUID LIMIT (%)	PLASTICITY INDEX (%)	USCS			
•	B-2-1	B-2-1 S-10	18'-20'		13	41	28	SC			

Client: IPR-GDF SUEZ
Project: COLETO CREEK

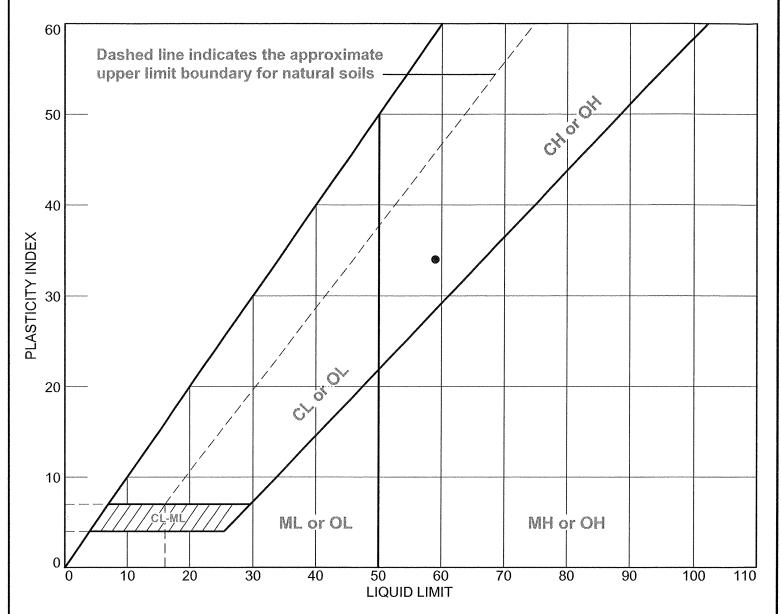
Project No.: 60225561



	SOIL DATA											
SYMBOL	SOURCE	SAMPLE NO.	DEPTH	NATURAL WATER CONTENT (%)	PLASTIC LIMIT (%)	LIQUID LIMIT (%)	PLASTICITY INDEX (%)	uscs				
•	B-2-1	B-2-1 S-17	32'-34'		14	29	15	SC				

Client: IPR-GDF SUEZ
Project: COLETO CREEK

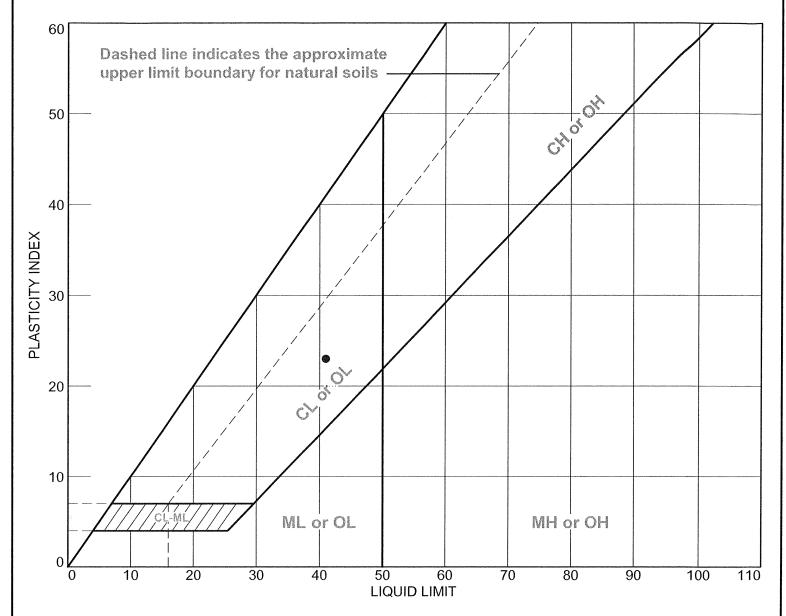
Project No.: 60225561



	SOIL DATA											
SYMBOL	SOURCE	SAMPLE NO.	DEPTH	NATURAL WATER CONTENT (%)	PLASTIC LIMIT (%)	LIQUID LIMIT (%)	PLASTICITY INDEX (%)	USCS				
•	B-2-1	B-2-1 S-27	55.0'-56.6'		17	28	11	SC				

Client: IPR-GDF SUEZ
Project: COLETO CREEK

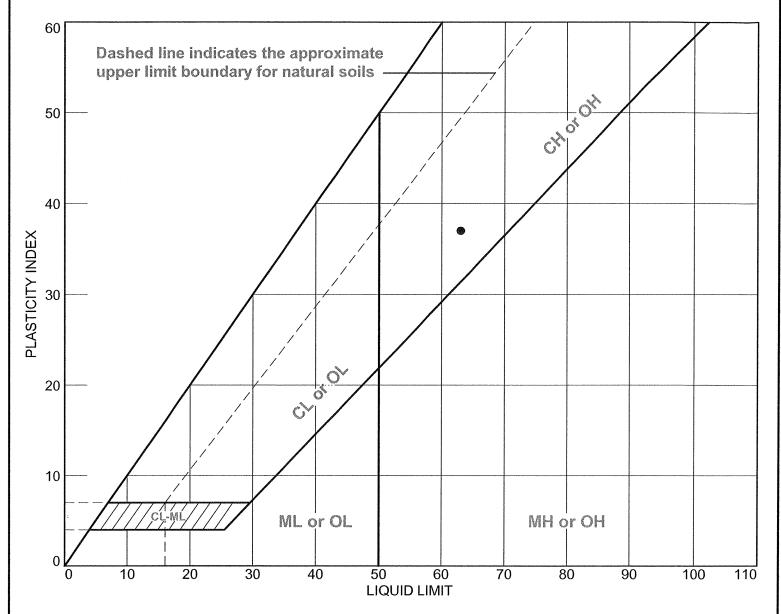
Project No.: 60225561



	SOIL DATA										
SYMBOL	SOURCE	SAMPLE NO.	DEPTH	NATURAL WATER CONTENT (%)	PLASTIC LIMIT (%)	LIQUID LIMIT (%)	PLASTICITY INDEX (%)	USCS			
•	B-2-1	B-2-1 S-33	85.0'-86.5'		25	59	34	СН			

Client: IPR-GDF SUEZ
Project: COLETO CREEK

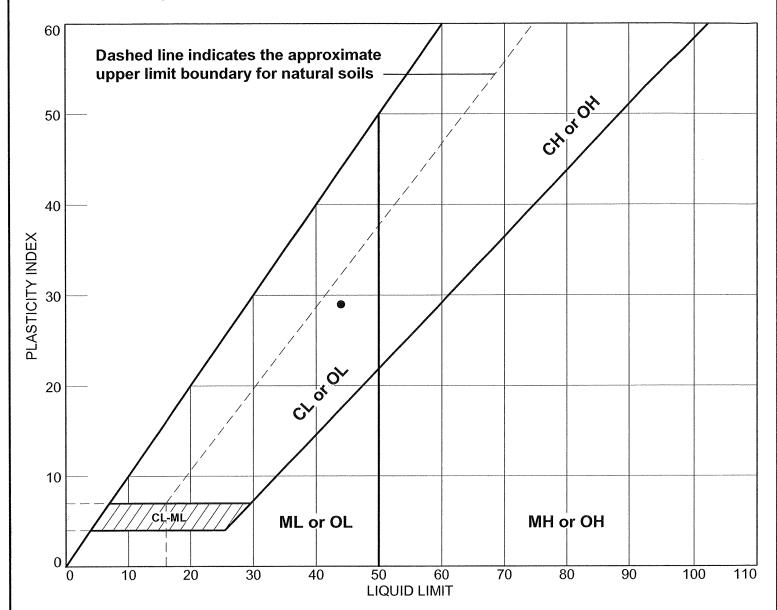
Project No.: 60225561



	SOIL DATA											
SYMBOL	SOURCE	SAMPLE NO.	DEPTH	NATURAL WATER CONTENT (%)	PLASTIC LIMIT (%)	LIQUID LIMIT (%)	PLASTICITY INDEX (%)	uscs				
•	B-2-2	B-2-2 S-16	59.0'-60.5'		18	41	23	CL				

Client: IPR-GDF SUEZ
Project: COLETO CREEK

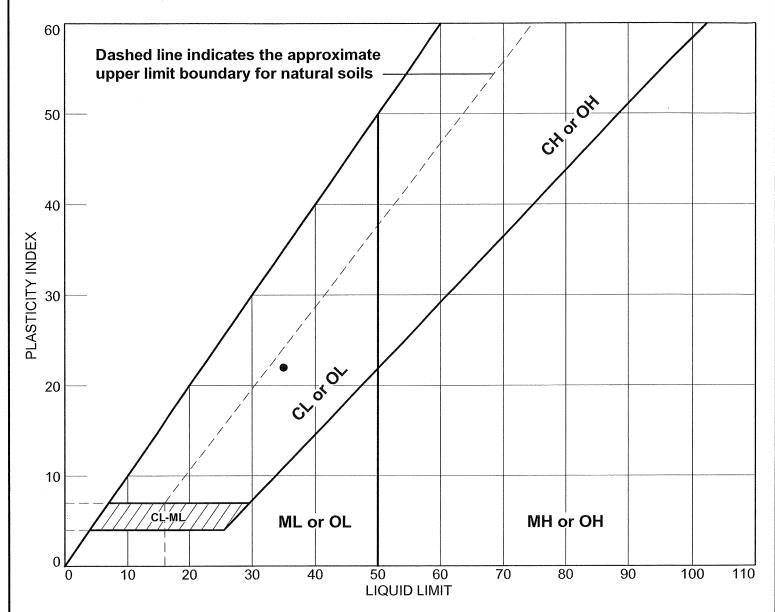
Project No.: 60225561



	SOIL DATA										
SYMBOL	SOURCE	SAMPLE NO.	DEPTH	NATURAL WATER CONTENT (%)	PLASTIC LIMIT (%)	LIQUID LIMIT (%)	PLASTICITY INDEX (%)	USCS			
•	B-2-2	B-2-2 S-18	69.0'-70.5'		26	63	37	СН			

Client: IPR-GDF SUEZ **Project:** COLETO CREEK

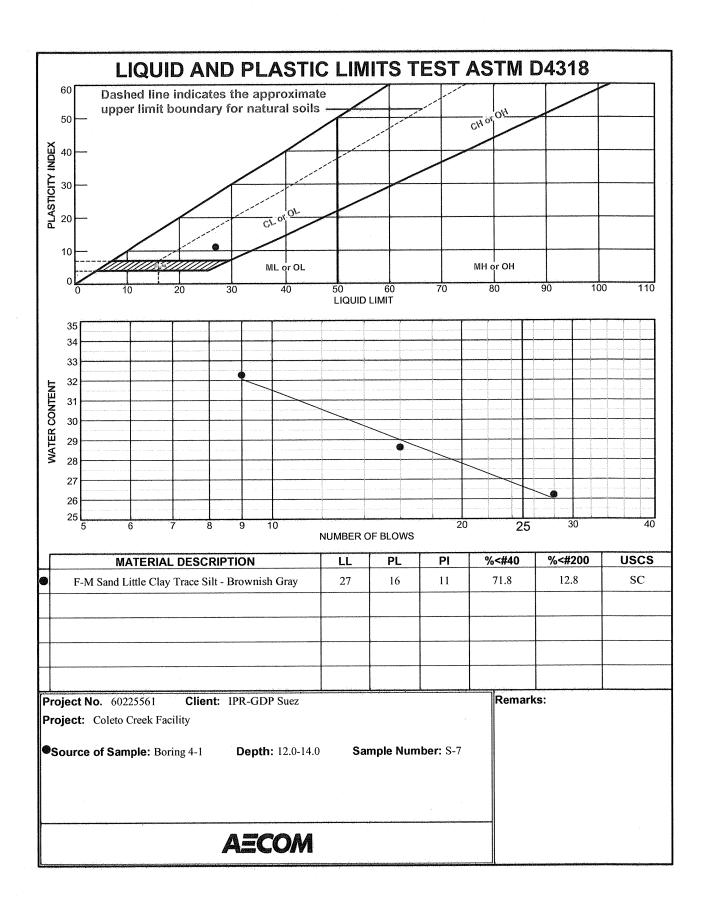
Project No.: 60225561

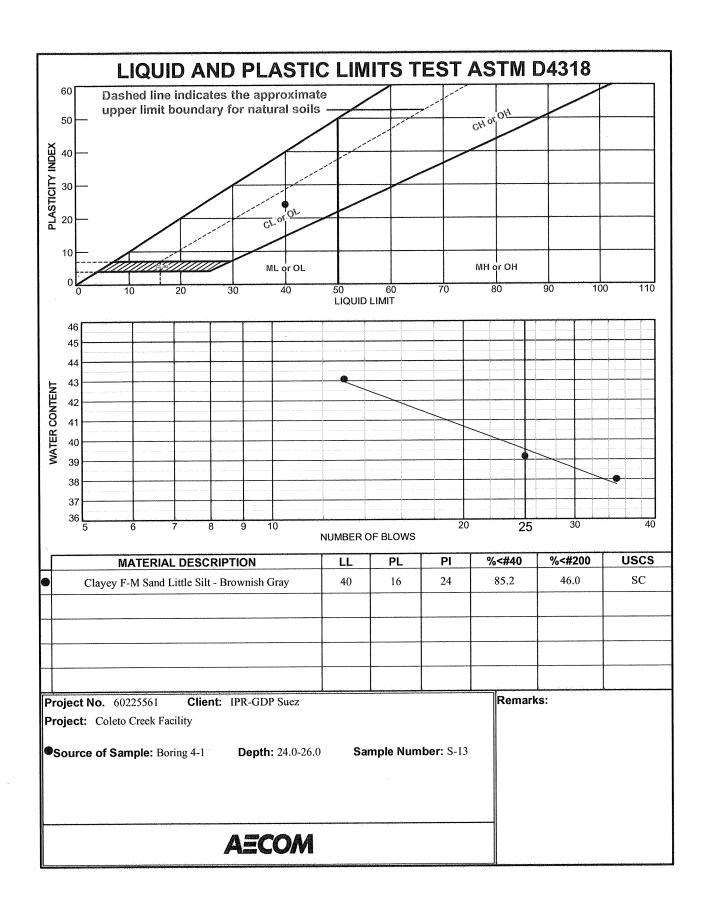


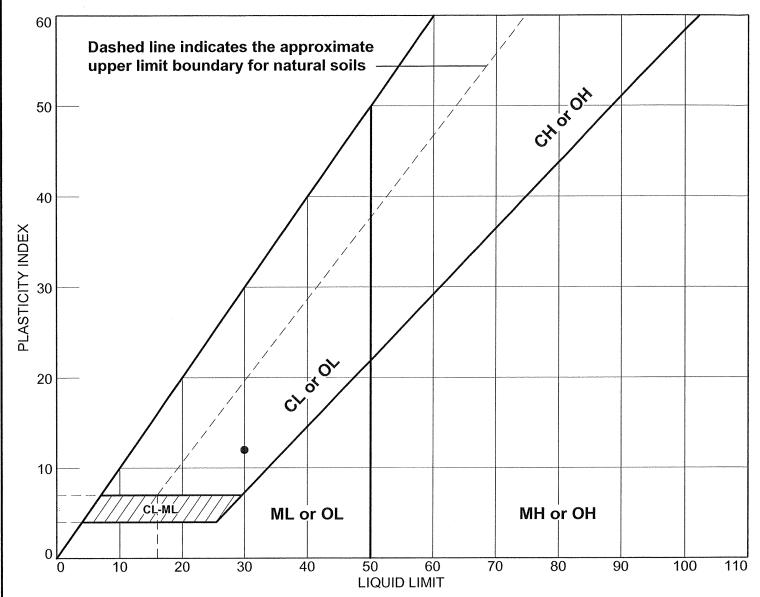
	SOIL DATA										
SYMBOL	SOURCE	SAMPLE NO.	DEPTH	NATURAL WATER CONTENT (%)	PLASTIC LIMIT (%)	LIQUID LIMIT (%)	PLASTICITY INDEX (%)	USCS			
•	B-3-1	B-3-1 S-9	16.0'-17.8'	·	15	44	29	SC			

Client: IPR-GDF SUEZ
Project: COLETO CREEK

Project No.: 60225561




	SOIL DATA												
SYMBOL	SOURCE	SAMPLE NO.	DEPTH	NATURAL WATER CONTENT (%)	PLASTIC LIMIT (%)	LIQUID LIMIT (%)	PLASTICITY INDEX (%)	USCS					
•	B-3-1	B-3-1 S-10	18'-20'		13	35	22	SC					



Client: IPR-GDF SUEZ
Project: COLETO CREEK

Project No.: 60225561

	SOIL DATA												
SYMBOL	SOURCE	SAMPLE NO.	DEPTH	NATURAL WATER CONTENT (%)	PLASTIC LIMIT (%)	LIQUID LIMIT (%)	PLASTICITY INDEX (%)	USCS					
•	B-5-1	B-5-1 S-14	26'-27'		18	30	12	CL					

Client: IPR-GDF SUEZ
Project: COLETO CREEK

Project No.: 60225561

SPECIFIC GRAVITY OF SOIL SOLIDS ASTM D-854

Vernon Hills, IL 60061 Phone: (847) 279-2500 Fax: (847) 279-2550 Laboratory Services Group 750 Corporate Woods Parkway Test Date: 12/6/2011 AECOM Project No.: 60225561 **Coleto Creek Facility Project Name: IPR-GDP Suez** Boring/Source: Boring/Source: 4-1 1-1 16,17,18 Sample No.: Sample No.: 12.0-14.0 Depth (ft.): 30.0-36.7 Depth (ft.): Description: F-M Sand Little Clay Trace Silt Description: Caliche - White - Brownish Gray SC Test 2 Test 1 SG-10 SG-3 Flask No. Flask No. 742.38 742.20 Wt. Flask + Soil + Water (W2) Wt. Flask + Soil + Water (W2) 677.46 Wt. Flask + Water (W3) 668.44 Wt. Flask + Water (W3) 21.5 21.5 Temperature (C) Temperature (C) 0.99789 Density of Water @ test Tem. 0.99789 Density of Water @ test Tem. Tare No. ED-4 ED-4 Tare No. Wt. Tare 576.51 Wt. Tare 578.17 Wt. Tare + Soil 695.11 Wt. Tare + Soil 681.20 118.60 Wt. Soil (W2-W3) 103.03 Wt. Soil (W2-W3) 0.99968 (k) Temp. Correction 0.99968 (k) Temp. Correction Specific Gravity (Gs) 2.690 Specific Gravity (Gs) 2.655 Boring/Source: 2-1 Boring/Source: 14 13 Sample No.: Sample No.: 26.0-28..0 24.0-26.0 Depth (ft.): Depth (ft.): Clayey F-M Sand Little Silt Clayey F-M Sand Little Silt Description: Description: - Brownish Gray SC - Brownish Gray SC

	Test 3
Flask No.	SG-1
Wt. Flask + Soil + Water (W2)	726.62
Wt. Flask + Water (W3)	675.32
Temperature (C)	21.5
Density of Water @ test Tem.	0.99789
Tare No.	ED-6
Wt. Tare	602.23
Wt. Tare + Soil	684.30
Wt. Soil (W2-W3)	82.07
(k) Temp. Correction	0.99680
Specific Gravity (Gs)	2.659

	Test 4
Flask No.	SG-2
Wt. Flask + Soil + Water (W2)	738.44
Wt. Flask + Water (W3)	668.48
Temperature (C)	21.5
Density of Water @ test Tem.	0.99789
Tare No.	ED-10
Wt. Tare	619.18
Wt. Tare + Soil	730.96
Wt. Soil (W2-W3)	111.78
(k) Temp. Correction	0.99968
Specific Gravity (Gs)	2.672

Technician	BCM	Calculated	BCM	Checked_	WPQ
Date	12/2/11	Date	12/2/11	Date _	12/6/11

ORGANIC CONTENT TEST ASTM D-2974 Method C

Laboratory Services Group

750 Corporate Woods Parkway, Vernon Hills, Illinois 60061

Phone: (847) 279-2500 Fax:(847) 279-2550

AECOM Project No.: 60225561

Project Name: Coleto Creek Facility - IPR-GDP Suez

Date Tested: 12/6/2011

Sample Information

 Boring / Source:
 B-4-1

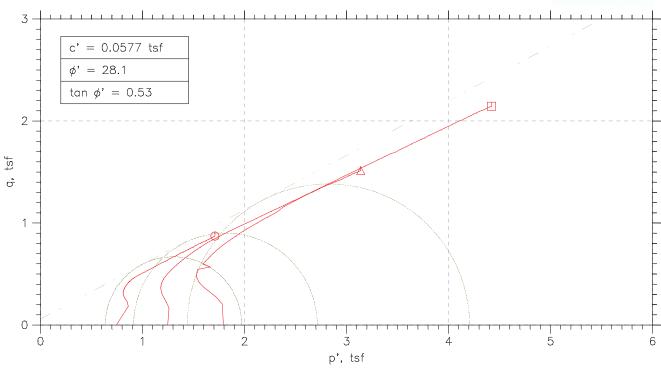
 Sample No.:
 13

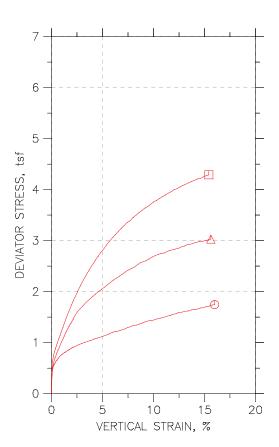
 Depth (ft.):
 24.0-26.0

Organic Content Test Data

Tare No.:	N
Tare Wt. (gm): T	17.71
Wet Wt. + Tare (gm): A+T	48.27
Dry Wt. + Tare (gm): B+T	44.70

Moisture Content (%):


Wt. of Ash + Tare (gm): D+T 44.65 Percent Ash: (D-T/B-T)x100 = E 99.81


Organic Content (%): 0.19

^{**} Note: Test performed by heating the sample to 440 degrees centigrade for a period of three hours.

TRIAXIAL COMPRESSION TEST REPORT

Sy	mbol	0	Δ		
Te	st No.	10.4 PSI	17.4 PSI	24.3 PSI	
	Diameter, in	2.8362	2.8441	2.8457	
	Height, in	5.9134	6.0831	6.0173	
<u>ē</u> .	Water Content, %	21.81	14.93	13.70	
Initial	Dry Density, pcf	105.5	115.9	120.2	
	Saturation, %	100.17	90.88	94.34	
	Void Ratio	0.58172	0.4389	0.38805	
<u></u>	Water Content, %	21.39	15.80	14.06	
Shear	Dry Density, pcf	106.1	117.3	121.3	
	Saturation, %	100.00	100.00	100.00	
efore	Void Ratio	0.57165	0.42209	0.37567	
m	Back Press., tsf	5.0449	5.0454	5.0404	
Mir	nor Prin. Stress, tsf	0.74395	1.2474	1.7924	
Мс	ıx. Dev. Stress, tsf	1.7444	3.0288	4.2889	
Tir	ne to Failure, min	1612.1	1613.1	1614.3	
Str	rain Rate, %/min	0.02	0.02	0.03	
В-	Value	.98	.97	.95	
Ме	asured Specific Gravity	2.67	2.67	2.67	
Lic	quid Limit	42	42	42	
PI	astic Limit	24	24	24	
PIC	asticity Index	18	18	18	
] Fa	ilure Sketch				

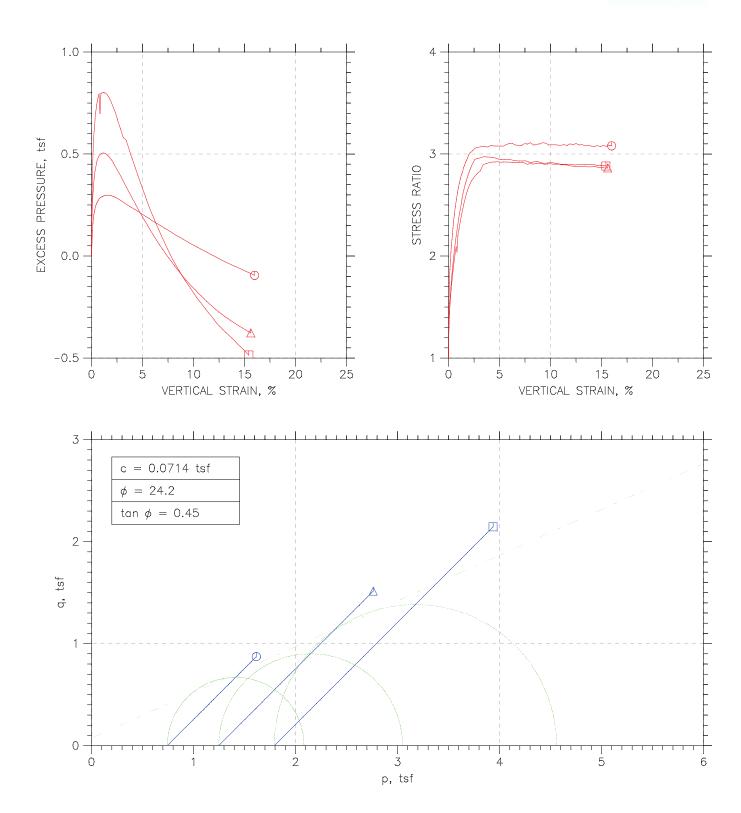
Project: COLETO CREEK FACILITY

Location: IPR-GDF SUEZ

Project No.: 60225561

Boring No.: B-2-1 S-14

Sample Type: 3" ST



Description: CLAYEY F-M SAND LITTLE SILT- BROWNISH GRAY SC

Remarks: FAILURE CRITERIA = MAXIMUM EFFECTIVE STRESS RATIO TEST PERFORMED AS PER ASTM D4767

TRIAXIAL COMPRESSION TEST REPORT

Location: IPR-GDF SUEZ	Project No.: 60225561					
Tested By: BCM	Checked By: WPQ					
Test Date: 12/5/11	Depth: 26.0'-28.0'					
Sample Type: 3" ST	Elevation:					
Description: CLAYEY F-M SAND LITTLE SILT- BROWNISH GRAY SC						
Remarks: FAILURE CRITERIA = MAXIMUM EFFECTIVE STRESS RATIO TEST PERFORMED AS PER ASTM D4767						
	Tested By: BCM Test Date: 12/5/11 Sample Type: 3" ST ILT- BROWNISH GRAY SC					

Liquid Limit: 42

Project: COLETO CREEK FACILITY Boring No.: B-2-1 S-14 Sample No.: S-14 Test No.: 10.4 PSI

Location: IPR-GDF SUEZ Tested By: BCM Test Date: 12/5/11 Sample Type: 3" ST

Project No.: 60225561 Checked By: WPQ Depth: 26.0'-28.0' Elevation: ----

Measured Specific Gravity: 2.67

Soil Description: CLAYEY F-M SAND LITTLE SILT- BROWNISH GRAY SC Remarks: FAILURE CRITERIA = MAXIMUM EFFECTIVE STRESS RATIO TEST PERFORMED AS PER ASTM D4767

Piston Area: 0.00 in^2 Piston Friction: 0.00 lb Piston Weight: 0.00 lb Filter Strip Correction: 0.00 tsf Membrane Correction: 0.00 lb/in Correction Type: Uniform Specimen Height: 5.91 in Specimen Area: 6.32 in^2 Specimen Volume: 37.36 in^3

Plastic Limit: 24

iquia Limit: 42		Р	astic Limit:	24		measured	i Specific G
Time min	Vertical Strain %	Corrected Area in^2	Deviator Load 1b	Deviator Stress tsf	Pore Pressure tsf	Horizontal Stress tsf	Vertical Stress tsf
1 0 2 5.0001 3 10 4 15 5 20 6 25 7 30.001 8 35.001 9 40.001 10 45.001 11 50.001 11 50.001 12 55.001 13 60.001 14 70.001 15 80.001 16 90.002 17 100 18 110 19 120 20 130 21 140 22 150 23 160 24 170 25 180 26 190 27 200 28 210 29 220 30 230 31 240 32 270 33 360 34 330 35 360 36 390 37 420 38 450 40 510 41 540 42 570 43 660 44 630 44 630 45 660 46 690 47 720 48 750 49 780 50 810 51 840 52 870 53 900 54 930 55 960 661 110 62 1170 63 1200 64 1230 65 1260 66 1290 67 1320 66 1290 67 1320 68 1350 77 1612.1	0 0.045204 0.094782 0.141444 0.18956 0.23768 0.28726 0.33538 0.43308 0.4812 0.53078 0.6766 0.77576 0.87346 0.97115 1.0703 1.1695 1.2701 1.3707 1.4699 1.5676 1.6682 1.7688 1.9715 2.0706 2.1712 2.3725 2.6699 2.9674 3.5609 3.8584 4.1602 4.4621 4.4761 5.0585 5.3574 5.6505 5.3574 5.6505 6.244 6.5458 6.8477 7.14641 7.7386 8.0332 8.3329 9.2333 9.5335 9.6355 10.419 10.419 10.7187 11.317 11.613 11.915 12.55 12.794 13.996 14.889	6.3179 6.3207 6.3207 6.3229 6.3329 6.3329 6.3329 6.33391 6.3422 6.3453 6.3546 6.3546 6.3546 6.3609 6.3673 6.3738 6.3738 6.3862 6.3926 6.3921 6.4057 6.4121 6.4185 6.425 6.4382 6.4449 6.4514 6.	0 31.887 40.44 44.344 46.761 48.992 51.0618 54.012 55.5 57.08 58.289 59.311 61.636 63.588 65.638 67.213 68.794 70.281 71.676 72.605 74.093 75.023 76.231 77.254 78.462 79.95 81.809 82.553 83.575 86.457 88.688 91.103 97.892 99.658 104.03 104.03 104.03 104.03 104.03 104.03 104.03 104.03 105.07 115.28 117.32 119.46 122.62 124.67 127.73 128.57 131.59 143.72 145.68 147.62 159.71 160.74 163.06 164.87 166.87 168.08 169.66 172.36 173.75 176.23 176.23 176.23 177.23 176.23 177.23 176.23 177.23 177.24 177.23 177.24 177.23 177.24 177.24 177.25 177.	0 0.36323 0.46042 0.50464 0.53189 0.557 0.57964 0.61318 0.62975 0.64737 0.66075 0.67202 0.69766 0.71904 0.74144 0.75854 0.7756 0.79158 0.80646 0.81609 0.83197 0.84157 0.85426 0.86483 0.87746 0.89316 0.90471 0.91204 0.92985 0.95898 0.98072 1.0054 1.0248 1.042 1.0692 1.0851 1.1256 1.1441 1.1715 1.1997 1.2188 1.2277 1.22455 1.2641 1.1441 1.1715 1.1997 1.2188 1.2277 1.2455 1.2641 1.442 1.4502 1.4673 1.4426 1.471 1.5576 1.5926 1.5974 1.615 1.5926 1.5974 1.615 1.5926 1.5974 1.615 1.5926 1.5974 1.615 1.62474 1.6571 1.6777 1.68571 1.6777 1.68571 1.6777 1.68571 1.6777 1.6775 1.7749 1.7774 1.7744	5.04497 5.1097 5.1097 5.12061 5.2306 5.22487 5.22349 5.2349 5.33194 5.33194 5.33194 5.3323 5.33428 5.33428 5.33428 5.33428 5.33428 5.33428 5.33428 5.33428 5.33428 5.33428 5.33428 5.32849 5.32849 6.32849 6	5.7888 5.7888	5.7888 6.152 6.2934 6.3207 6.32934 6.32934 6.32934 6.32934 6.32936 6.4186 6.44865 6.44865 6.5473 6.56444 6.5939 6.66304 6.66336 6.66336 6.66336 6.66336 6.70092 6.7478 6.77478 6.77478 6.7942 6.7942 6.7942 6.7942 6.7943 7.0165 7.0165 7.0343 7.0529 7.12159 7.2561 7.2561 7.3864 7.3864 7.387 7.3864 7.3864 7.3864 7.3864 7.3864 7.3864 7.3864 7.3864 7.3864 7.3864 7.3864 7.3864 7.3864 7.3866 7

Project: COLETO CREEK FACILITY Boring No.: B-2-1 S-14 Sample No.: S-14 Test No.: 10.4 PSI Location: IPR-GDF SUEZ Tested By: BCM Test Date: 12/5/11 Sample Type: 3" ST Project No.: 60225561 Checked By: WPQ Depth: 26.0'-28.0' Elevation: ----

Soil Description: CLAYEY F-M SAND LITTLE SILT- BROWNISH GRAY SC Remarks: FAILURE CRITERIA = MAXIMUM EFFECTIVE STRESS RATIO TEST PERFORMED AS PER ASTM D4767

Piston Area: 0.00 in^2 Piston Friction: 0.00 lb Piston Weight: 0.00 lb Filter Strip Correction: 0.00 tsf Membrane Correction: 0.00 lb/in Correction Type: Uniform Specimen Height: 5.91 in Specimen Area: 6.32 in^2 Specimen Volume: 37.36 in^3

iquid I	Limit: 42		P.	lastic Limit:	24		Measured	Specific G	ravity: 2.67	
	Vertical Strain %	Total Vertical Stress tsf	Total Horizontal Stress tsf	Excess Pore Pressure tsf	A Parameter	Effective Vertical Stress tsf	Effective Horizontal Stress tsf	Stress Ratio	Effective p tsf	q tsf
123456789012345678901234567890123456789012345678901234567890123456789012345678901234567	0.00 0.05 0.09 0.14 0.24 0.38 0.43 0.58 0.78 0.97 1.07 1.27 1.47 1.67 1.87 1.97 2.17 2.27 2.37 2.27 2.37 2.27 2.37 2.27 2.37 2.27 2.37 2.27 2.37 2.27 2.37 2.27 2.37 2.27 2.37 2.27 2.37 2.27 2.2	5.7888 6.152 6.2492 6.3207 6.3458 6.3664 6.4186 6.4365 6.4408 6.4495 6.5473 6.55473 6.5644 6.5949 6.6208 6.6304 6.6536 6.66304 6.6536 6.67009 6.7082 6.7082 6.7478 6.76949 6.8308 6.8739 6.9685 7.0076 7.1272 7.2153 7.2208 7.22159 7.22159 7.22159 7.22159 7.22159 7.22159 7.22159 7.22159 7.22159 7.22159 7.22159 7.22159 7.22169 7.3462 7.4465 7.4963 7.4963 7.4963 7.4963 7.4963 7.4963 7.4963 7.50362 7.5	5.7888 5.7888	0.064842 0.1256 0.1256 0.16123 0.18576 0.20387 0.21848 0.23016 0.24009 0.24827 0.25528 0.26171 0.26638 0.27456 0.28098 0.28975 0.29208 0.29384 0.29384 0.29384 0.29379 0.29407 0.29792 0.29792 0.29792 0.29792 0.29792 0.29792 0.29793 0.29617 0.29617 0.2955 0.29617 0.29792 0.29792 0.29792 0.29792 0.29792 0.29792 0.29792 0.29793 0.29660 0.2955 0.29208 0.29325 0.29208 0.29325 0.29208 0.29590 0.29770 0.18401 0.1735 0.16473 0.15597 0.14663 0.13728 0.12852 0.11917 0.10982 0.10048 0.092298 0.083536 0.074773 0.15597 0.14663 0.033882 0.04206 0.033882 0.04206 0.033882 0.04206 0.033882 0.04206 0.033882 0.04206 0.033882 0.04206 0.033882 0.04206 0.033882 0.04206 0.033882 0.04206 0.033882 0.04206 0.033882 0.042644 -0.04907 -0.055942 -0.068932 -0.075942 -0.082367 -0.082367 -0.082367 -0.0899635	0.000 0.179 0.273 0.319 0.349 0.366 0.377 0.385 0.394 0.396 0.394 0.396 0.394 0.396 0.382 0.377 0.377 0.377 0.377 0.367 0.363 0.358 0.354 0.349 0.344 0.320 0.315 0.308 0.291 0.275 0.243 0.230 0.216 0.102 0.180 0.168 0.157 0.118 0.192 0.180 0.168 0.157 0.1180 0.168 0.157 0.1180 0.1099 0.091 0.082 0.060 0.053 0.060 0.055 0.068 0.060 0.055 0.068 0.060 0.055 0.029 0.017 0.012 0.0068 0.060 0.055 0.029 0.017 0.012 0.0068 0.0075 0.012 0.008 -0.013 -0.017 -0.022 -0.026 -0.030 -0.037 -0.012 -0.008 -0.013 -0.017 -0.022 -0.026 -0.030 -0.037 -0.012 -0.008 -0.013 -0.013 -0.017 -0.022 -0.026 -0.030 -0.037 -0.012 -0.008 -0.0054	0.74395 1.0423 1.07421 1.0874 1.0901 1.10971 1.1154 1.117 1.1254 1.1496 1.1496 1.1497 1.12275 1.2417 1.2275 1.2417 1.2548 1.3931 1.3247 1.3496 1.33014 1.33639 1.378 1.36368 1.36368 1.6952 1.7702 1.6368 1.6668 1.6952 1.7731 1.84554 1.9798 1.8157 1.8458 1.9798 1.9798 1.9798 1.9798 2.1176 2.1491 2.12176 2.1491 2	0.74395 0.6791 0.61835 0.58272 0.55818 0.54007 0.52547 0.51379 0.50385 0.49568 0.49568 0.49568 0.48224 0.47757 0.46939 0.46296 0.45711 0.45186 0.45011 0.44602 0.44602 0.44602 0.44602 0.44602 0.44661 0.45770 0.45186 0.45771 0.50385 0.5132 0.5132 0.552196 0.66041 0.66917 0.665165 0.66041 0.66917 0.67794 0.67794 0.67794 0.67794 0.67794 0.67794 0.72584 0.73402 0.74862 0.75738 0.76498 0.771099 0.77994 0.78659 0.79302 0.79302 0.79302 0.79302 0.79302 0.79302 0.79302 0.79302 0.79302 0.79302 0.79302 0.79302 0.79302 0.79302 0.79302 0.79302 0.79302 0.79302 0.79303 0.81288 0.81288 0.81288 0.81288 0.81288	1.000 1.535 1.745 1.866 1.953 2.031 2.163 2.1270 2.3270 2.3270 2.486 2.5520 2.7799 2.865 2.7799 2.8865 2.9620 2.7799 2.8865 2.989 3.001 3.068 3.072 3.088 3.080 3.090 3.104 3.088 3.099 3.104 3.089 3.099 3.105 3.099 3.105 3.099 3.107 3.089 3.099 3.107 3.089 3.099 3.1090 3.088 3.0990 3.090 3.088 3.090 3.090 3.088 3.090 3.090 3.088 3.090 3.088 3.090 3.090 3.088 3.090 3.090 3.088 3.090 3.088 3.090 3.090 3.088 3.090 3.088 3.090 3.088 3.090 3.088 3.090 3.088 3.090 3.088	0.74395 0.86072 0.84857 0.843504 0.82413 0.81857 0.81266 0.81044 0.81055 0.81262 0.81282 0.82842 0.82842 0.82842 0.85582 0.86681 0.87902 0.89553 0.90305 0.90305 0.90305 0.904479 0.96501 0.96501 0.96501 0.96501 0.96501 0.9645 1.0049 1.00478 1.104 1.12387 1.1703 1.1886 1.2018 1.2201 1.2387 1.2621 1.2802 1.3335 1.3341 1.3536 1.3755 1.3341 1.3536 1.3755 1.3341 1.3536 1.3755 1.3341 1.3536 1.3755 1.3341 1.3536 1.3755 1.3341 1.3536 1.3755 1.3861 1.2001 1.2802 1.3335 1.3341 1.3536 1.3755 1.3861 1.2018 1.2018 1.2019	0 0.18161 0.25232 0.26595 0.28595 0.28882 0.30659 0.31488 0.333037 0.334883 0.337072 0.37927 0.3878 0.40804 0.41599 0.42713 0.445604 0.45604 0.45604 0.45604 0.45604 0.45604 0.45604 0.45604 0.45604 0.45604 0.45604 0.4793 0.51239 0.51239 0.58278 0.56278 0.56278 0.56278 0.56278 0.56322 0.70636 0.66322 0.70636 0.67158 0.68246 0.69322 0.70636 0.72512 0.72512 0.73360 0.67158 0.663205 0.663205 0.66322 0.70636 0.706503 0.706503 0.706503 0.706503 0.7068246 0.706503 0.7068246 0.7068205 0.7068246 0.7068246 0.7068246 0.706826 0.7068278 0.80762 0

Project: COLETO CREEK FACILITY Boring No.: B-2-1 S-14 Sample No.: S-14 Test No.: 17.4 PSI

Location: IPR-GDF SUEZ Tested By: BCM Test Date: 12/5/11 Sample Type: 3" ST

Project No.: 60225561 Checked By: WPQ Depth: 26.0'-28.0' Elevation: ----

Soil Description: CLAYEY F-M SAND LITTLE SILT- BROWNISH GRAY SC Remarks: FAILURE CRITERIA = MAXIMUM EFFECTIVE STRESS RATIO TEST PERFORMED AS PER ASTM D4767

Piston Area: 0.00 in^2 Piston Friction: 0.00 lb Piston Weight: 0.00 lb Filter Strip Correction: 0.00 tsf Membrane Correction: 0.00 lb/in Correction Type: Uniform Specimen Height: 6.08 in Specimen Area: 6.35 in^2 Specimen Volume: 38.65 in^3

Liquid Limit: 42 Plastic Limit: 24 Measured Specific Gravity: 2.67

ı qu i u	Limit: 42		ы	astic Limit:	24		measurea	Specific Gr
	Time min	Vertical Strain %	Corrected Area in^2	Deviator Load 1b	Deviator Stress tsf	Pore Pressure tsf	Horizontal Stress tsf	Vertical Stress tsf
123456789011234567890122345678901233456789012344567890123345678901234678901246789012467890124678901246789012467890124678901246789012467890124678901246789012467890124678901246789012467890124678901246789012467890100000000000000000000000000000000000	0 5.0038 10.004 25.004 20.004 25.30 35.40 45.50 55.001 60.001 70.001 80.001 90.001 1100 1200 1300 140 150 160 170 180 190 200 210 220 230 240 270 300 330 360 390 420 450 660 660 660 690 720 750 780 810 840 870 990 990 1020 1140 1140 1170 1140 1170 1140 1170 1140 1170 1140 1170 1140 1170 117	0.0388 0.085062 0.13132 0.17908 0.22683 0.27459 0.37234 0.37159 0.42083 0.46859 0.51634 0.5641 0.65961 0.75512 0.85361 0.95061 1.0491 1.1446 1.2401 1.3356 1.62561 1.7206 1.62561 1.7206 1.62561 1.7206 1.6257 2.1012 2.1067 2.2907 2.5817 2.8757 3.1682 3.4592 4.0397 4.3292 4.0397 4.3292 4.0397 7.5362 6.3692 6.6587 6.9497 7.5362 7.8302 8.1197 8.6987 8.9883 9.2793 9.8643 10.157 10.4736 11.31 11.869 12.183 12.477 11.31 11.889 12.183 12.477 11.316 11.889 12.183 12.477 11.316 11.889 12.183 12.477 11.316 11.889 12.183 12.477 11.316 11.889 12.183 12.477 11.316 11.889 12.183 12.477 12.5718 13.643 13.355 13.643 13.355 13.643 13.355 13.643 13.3355	6.3535 6.3535 6.353584 6.3613 6.3644 6.36745 6.36745 6.37676 6.37989 6.37989 6.39522 6.40177 6.4203 6.44203 6.44203 6.44515 6.44515 6.44515 6.44515 6.4515 6.4515 6.46405 6.46405 6.4607 6.5211 6.5806 6.68005 6.66005 6.66005 6.66005 6.66005 6.66005 6.67228 6.7434 6.7851 6.9368 7.33566 7.33566 7.33566 7.33566 7.33566 7.33566 7.33566 7.33566 7.3458 7.5592 7.559	29.3 39.31 45.38 50.036 53.985 57.344 60.35 62.884 65.477 67.634 76.204 80.27 84.573 88.698 92.706 96.124 99.719 104.26 115.28 111.57 115.28 1124.71 127.81 124.71 127.81 137.2 146.28 152.23 164.61 169.79 175.22 180.28 185.23 189.48 199.32 204.39 209.28 213.41 217.65 222.13 204.39 231.56 234.57 247.82 250.54 261.97 265.5 261.97 265.63 277.82 285.01 287.49 291.85 229.45 302.28 305.4 309.29 312.12 316.72	0 0.3325 0.44513 0.51363 0.56606 0.61044 0.68176 0.71004 0.73895 0.76319 0.79007 0.8136 0.95503 0.99568 1.0396 1.1161 1.1658 1.2101 1.1658 1.2101 1.2451 1.3863 1.4197 1.4875 1.3863 1.4197 1.4875 1.3863 1.4197 1.4875 1.5193 1.615 1.6757 1.7372 1.801 1.8521 1.9547 2.0023 2.0419 2.0887 2.1347 2.1823 2.2277 2.2645 2.3425 2.3425 2.3425 2.3425 2.3425 2.3425 2.3425 2.3426 2.4496 2.5241 2.5241 2.5241 2.5241 2.5241 2.5241 2.5241 2.5241 2.5241 2.5241 2.7034 2.7264 2.7342 2.8787 2.7842 2.8787 2.7842 2.8787 2.7842 2.8787 2.7842 2.8787 2.8853 2.9266 2.9486 2.7587 2.7842 2.8788 2.9226 2.9308 2.9485 2.9226 2.9308 2.9485 2.9226 2.9308 2.9485 2.9485 2.9226 2.9308 2.9485 2.9226 2.9308 2.9485 2.9226 2.9308 2.9485 2.9226 2.9308 2.9485 2.9226 2.9308 2.9485 2.9886 3.003 3.003 3.003 3.003 3.003	5.0454 5.19856 5.33344 5.4298 5.4362 5.4406 5.4569 5.553756 5.55408 5.56408 5.56408 5.56408 5.6682 6.68408	6.2928 6.2928	6.2928 6.6253 6.8064 6.8589 6.97448 7.00317 7.0829 7.10507 7.124315 7.2885 7.3324 7.4089 7.55379 7.66791 7.67125 7.66791 7.74643 7.8121 7.9078 8.0949 8.1949 8.2957 7.8121 8.3347 7.8121 8.3347 7.9685 8.6781 8.7755 8.6781 8.7755 8.6781 8.7755 8.7755 8.7759 8.7759 8.7759 8.7759 8.7759 8.7759 8.7759 8.7759 8.7759 8.7759 9.0149 9.12413 9.12413 9.12413 9.1254 9.12788 9.2788 9.3829 9.0919 9.1294 9.12144 9.11716 9.1236 9.1236 9.2788 9.2788 9.2788 9.2788 9.3829

Project: COLETO CREEK FACILITY Boring No.: B-2-1 S-14 Sample No.: S-14 Test No.: 17.4 PSI

Location: IPR-GDF SUEZ Tested By: BCM Test Date: 12/5/11 Sample Type: 3" ST

Project No.: 60225561 Checked By: WPQ Depth: 26.0'-28.0' Elevation: ----

Soil Description: CLAYEY F-M SAND LITTLE SILT- BROWNISH GRAY SC Remarks: FAILURE CRITERIA = MAXIMUM EFFECTIVE STRESS RATIO TEST PERFORMED AS PER ASTM D4767

Piston Area: 0.00 in^2 Piston Friction: 0.00 lb Piston Weight: 0.00 lb Filter Strip Correction: 0.00 tsf Membrane Correction: 0.00 lb/in Correction Type: Uniform Specimen Height: 6.08 in Specimen Area: 6.35 in^2 Specimen Volume: 38.65 in^3

Liquid L	imit: 42		P	lastic Limit	: 24		Measured	l Specific G	ravity: 2.67	
	Vertical Strain %	Total Vertical Stress tsf	Total Horizontal Stress tsf	Excess Pore Pressure tsf	A Parameter	Effective Vertical Stress tsf	Effective Horizontal Stress tsf	Stress Ratio	Effective p tsf	q tsf
12345678901123456789011234567890112334567890112345678901200000000000000000000000000000000000	0.00 0.04 0.09 0.13 0.23 0.27 0.37 0.42 0.47 0.56 0.66 0.75 1.05 1.14 1.24 1.34 1.53 1.63 1.62 1.91 2.10 2.20 2.58 2.88 3.46 3.75 4.03 4.62 4.91 5.57 6.08 6.36 6.36 6.36 7.24 7.54 7.54 7.54 7.54 7.54 7.54 7.54 7.5	6.228 6.6253 6.7379 6.8064 6.8589 6.9032 6.9049 6.9028 7.00218 7.00317 7.0829 7.1064 7.1507 7.12431 7.24815 7.3324 7.3697 7.4586 7.5029 7.5379 7.5103 7.6103 7.6103 7.6103 7.6103 7.7125 7.7464 7.7803 7.8121 7.9078 8.0938 8.1449 8.1983 8.2951 8.3817 8.3817 8.3817 8.3817 8.3817 8.3817 8.3817 8.3817 8.9689 8.9689 8.9689 8.9689 8.9689 8.9118 9.0118 9.0118 9.0118 9.0118 9.0118 9.1184 9.2154	6.2928 6.2928	0 .15311	0.000 0.460 0.528 0.562 0.581 0.599 0.5991 0.587 0.595 0.591 0.5861 0.575 0.561 0.524 0.485 0.469 0.485 0.469 0.452 0.3316 0.342 0.332 0.316 0.166 0.147 0.113 0.098 0.186 0.166 0.147 0.113 0.098 0.088 0.084 0.070 0.057 0.046 0.032 0.015 0.005 -0.032 -0.011 -0.056 -0.066 -0.071 -0.076 -0.088 -0.092 -0.099 -0.099 -0.099 -0.099 -0.099 -0.099 -0.099 -0.099 -0.105 -0.088 -0.092 -0.099 -0.105 -0.088 -0.091 -0.0113 -0.115 -0.118 -0.123 -0.123 -0.125	1.2474 1.4268 1.4268 1.4726 1.4845 1.4978 1.5142 1.5353 1.52498 1.56287 1.57834 1.65934 1.65934 1.65931 1.7828 1.8193 1.9576 1.9576 1.9977 2.0789 2.1179 2.12828 2.3229 2.44412 2.2828 2.7133 2.7922 2.8734 2.3229 2.4443 2.79324 2.32329 2.4443 3.3048 3.3732 3.4338	1.2474 1.0943 1.0122 0.95893 0.91844 0.88737 0.86296 0.84244 0.82524 0.81082 0.79917 0.78863 0.77975 0.76588 0.77534 0.74924 0.74536 0.74536 0.74536 0.74536 0.74531 0.76649 0.7731 0.78031 0.78031 0.78031 0.78752 0.7559 0.76649 0.7731 0.78031 0.78752 0.79529 0.80361 0.82912 0.85631 0.8846 0.91234 0.94007 0.96781 0.99388 1.0216 1.0477 1.0727 1.0971 1.0727 1.0971 1.1226 1.1459 1.1686 1.1914 1.213 1.2346 1.2546 1.1213 1.2346 1.2546 1.1914 1.213 1.3306 1.3484 1.3621 1.4599 1.5686 1.1914 1.213 1.2346 1.2546 1.1459 1.1686 1.1914 1.213 1.2346 1.5536 1.5636 1.5536	1.000 1.3440 1.440 1.536 1.616 1.688 1.7809 1.809 1.905 2.043 2.120 2.120 2.120 2.120 2.268 2.3399 2.4502 2.564 2.730 2.761 2.846 2.793 2.8846 2.947 2.960 2.947 2.960 2.944 2.938 2.933 2.921 2.944 2.938 2.923 2.921 2.944 2.938 2.931 2.921 2.944 2.938 2.933 2.921 2.944 2.938 2.931 2.921 2.944 2.938 2.933 2.921 2.944 2.944 2.938 2.923 2.921 2.944 2.944 2.944 2.944 2.944 2.944 2.944 2.944 2.944 2.944 2.944 2.944 2.944 2.944 2.944 2.944 2.944 2.938 2.923 2.921 2.921 2.921 2.921 2.921 2.921 2.921 2.922 2.923 2.923 2.923 2.923 2.923 2.923 2.923 2.923 2.924 2.8866 2.8663 2.8663	1.2474 1.2605 1.2348 1.2158 1.2158 1.2158 1.1926 1.187 1.1803 1.1	0 0.16625 0.2257 0.25682 0.28303 0.30522 0.32406 0.34088 0.35502 0.36947 0.3816 0.4068 0.42897 0.45143 0.47515 0.49784 0.51982 0.53846 0.55806 0.5829 0.60504 0.62255 0.64262 0.65874 0.67548 0.69317 0.70984 0.72681 0.74374 0.75966 0.8075 0.8075 0.8075 0.8075 0.92607 0.925277 0.97737 1.0012 1.021 1.0444 1.0673 1.0911 1.1138 1.1512 1.1927 1.2138 1.1512 1.1927 1.2138 1.3512 1.3743 1.3743 1.3794 1.3921 1.4095 1.4183 1.4584 1.4476 1.4613 1.4654 1.47844 1.4798 1.4908 1.493 1.5015 1.5079 1.5144

Project: COLETO CREEK FACILITY Boring No.: B-2-1 S-14 Sample No.: S-14 Test No.: 24.3 PSI

Location: IPR-GDF SUEZ Tested By: BCM Test Date: 12/5/11 Sample Type: 3" ST

Project No.: 60225561 Checked By: WPQ Depth: 26.0'-28.0' Elevation: ----

Soil Description: CLAYEY F-M SAND LITTLE SILT- BROWNISH GRAY SC Remarks: FAILURE CRITERIA = MAXIMUM EFFECTIVE STRESS RATIO TEST PERFORMED AS PER ASTM D4767

Piston Area: 0.00 in^2 Piston Friction: 0.00 lb Piston Weight: 0.00 lb Filter Strip Correction: 0.00 tsf Membrane Correction: 0.00 lb/in Correction Type: Uniform Specimen Height: 6.02 in Specimen Area: 6.36 in^2 Specimen Volume: 38.27 in^3

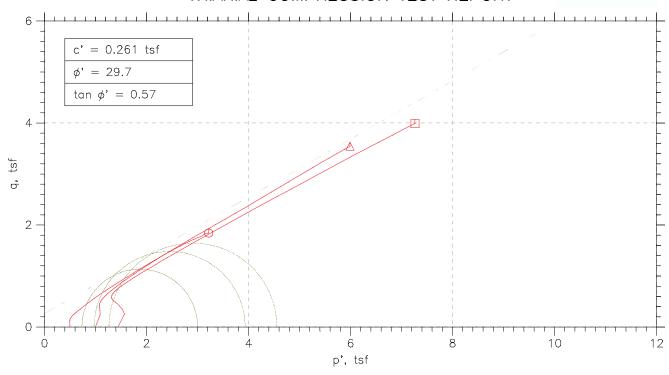
Liquid Limit: 42 Plastic Limit: 24 Measured Specific Gravity: 2.67

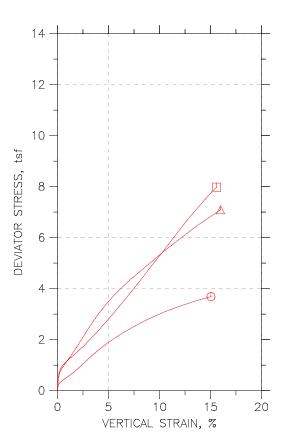
iquid L	imit: 42		PΊ	astic Limit:	24		Measured	l Specific G
	Time min	Vertical Strain %	Corrected Area in^2	Deviator Load lb	Deviator Stress tsf	Pore Pressure tsf	Horizontal Stress tsf	Vertical Stress tsf
123456789011234567890123456789012345678901234567890123456789012345678901234567890123456777777777777777777777777777777777777	0 5.0037 10.004 20.004 25.004 25.004 30 35 40 45 50 55 60.001 70.001 90.001 100 1120 130 140 150 160 170 180 190 220 230 240 270 330 330 340 450 450 450 450 450 450 450 450 450 4	0 0.032682 0.078153 0.12504 0.17194 0.22025 0.26714 0.31261 0.3595 0.40755 0.50444 0.55133 0.64575 0.92789 1.0169 1.2107 1.3059 1.4039 1.494 1.5943 1.6924 1.7862 1.8814 1.9794 2.076 2.1727 2.2707 2.5577 2.2707 2.5577 2.2707 2.5577 2.2707 2.5577 2.2707 2.5577 2.2707 2.5577 2.2707 2.5707 2.5707 2.706 2.1727 2.2707 2.5707 2.5707 2.5707 2.5707 2.5707 2.5707 2.5707 2.5707 2.7010 3.6945 3.6945 3.6945 3.6945 3.6945 3.6945 3.7101 7.9943 8.2828 8.5741 4.557 4.8398 5.1699 9.448 9.732 8.2828 8.5705 6.8604 7.1426 7.7101 7.9943 8.2828 8.5705 6.8604 7.1426 7.7101 7.9943 8.2828 8.5705 6.8604 7.1436 7.7101 7.9943 8.2828 8.5741 8.7426 7.7101 7.9943 8.2828 8.5741 8.7426 7.7101 7.9943 8.2828 8.5741 8.7426 7.7101 7.9943 8.2828 8.5741 8.7426 7.7101 7.9943 8.2828 8.5741 8.7426 7.7101 7.9943 8.2828 8.5741 8.7426 7.7426 7.7426 7.7426 7.7426 7.7426 7.7426 7.7426 7.7426 7.7426 7.7426 7.7426 7.7426 7.7426 7.7431 7.426 7.426	6.36 6.3621 6.365 6.367 6.368 6.371 6.3771 6.383 6.3893 6.3923 6.3953 6.4077 6.4137 6.4137 6.4137 6.44506 6.4457 6.44506 6.4451 6.44506 6.4506 6.4506 6.4695 6.4695 6.4695 6.5013 6.5027 6.5653 6.6038 6.6038 6.6038 6.6038 6.7239 6.7239 6.7444 6.7656 6.8285 6.8914 6.9126 6.8914 6.9126 6.9344 6.9126 6.9344 6.9126 6.9344 6.9588 7.0014 7.0236 7.0458 7.0458 7.0458 7.0458 7.0458 7.0458 7.0588 7.0904 7.1129 7.11596 7.183 7.2062 7.22957 7.2527 7.3003 7.3495 7.3399 7.4233 7.4349 7.3399 7.4233 7.4349 7.3399 7.4233 7.4349 7.3399 7.4233 7.4349 7.3399 7.4233 7.4349 7.3399 7.4233 7.4349 7.3399 7.4233 7.4349 7.3399 7.4233 7.4349 7.4434 7.443	0 36.347 49.512 56.855 66.401 70.072 73.376 76.365 81.978 84.443 86.961 92.1583 101.44 106.63 111.51 116.07 120.95 125.67 130.285 134.34 153.15 165.74 169.26 122.44 202.56 212.47 222.12 240.43 248.71 256.34 272.37 287.33 301.01 307.77 314.07 320.31 314.01 314.01 314.01 314.01 316.01 317.77 320.31 317.77 320.31 331.48 336.93 331.48 336.93 337.76 338.38 339.38 349.3	0 0 . 41134 0 . 56007 0 . 64283 0 . 75605 0 . 75005 0 . 75005 0 . 75015 0 . 82808 0 . 86141 0 . 89468 0 . 97903 1 . 0369 1 . 1387 1 . 1959 1 . 2494 1 . 2993 1 . 0369 1 . 1387 1 . 1959 1 . 2494 1 . 2993 1 . 3526 1 . 4041 1 . 4542 1 . 5037 1 . 1959 1 . 2494 1 . 2993 1 . 4041 1 . 4542 1 . 5037 1 . 9996 2 . 2215 2 . 3234 2 . 4217 2 . 6055 2 . 6873 2 . 7675 2 . 9166 2 . 9215 2 . 3234 2 . 4217 2 . 6055 3 . 3568	5.0404 5.3969 5.4904 5.5581 5.66527 5.7781 5.77605 5.7783 5.8374 5.8392 5.8392 5.8398 5.9401 5.7708 5.7088 5.3947 5.3947 5.3947 6.3942 4.9405 4.9405 4.9405 4.8809 4.8809 4.8809 4.8809 4.8809 4.8809 4.8809 4.8652 4.66	6.8328 6.8328	6.8328 7.2441 7.3929 7.4756 7.5334 7.5828 7.6239 7.6609 7.6942 7.7257 7.7566 7.7839 7.8118 7.8693 7.9215 8.0287 8.0822 8.1321 8.1321 8.2369 8.287 8.3365 8.337 8.3365 8.4392 8.4872 8.5806 8.6683 8.71321 8.5806 8.6683 8.71321 9.6003 9.672 9.2545 9.3487 9.4383 9.5201 9.6003 9.672 9.7494 9.8222 9.89125 10.016 10.078 10.131 10.22 10.285 10.331 10.322 10.425 10.591 10.659 10.659 10.659 10.659 10.659 10.659 10.659 10.659 10.659 10.6728 10.793 10.844 10.939 10.992 11.016 11.042 11.084 11.108
77	1614.3	15.429	7.5203	447.97	4.2889	4.5552	6.8328	11.122

Project: COLETO CREEK FACILITY Boring No.: B-2-1 S-14 Sample No.: S-14 Test No.: 24.3 PSI

Location: IPR-GDF SUEZ Tested By: BCM Test Date: 12/5/11 Sample Type: 3" ST

Project No.: 60225561 Checked By: WPQ Depth: 26.0'-28.0' Elevation: ----


Soil Description: CLAYEY F-M SAND LITTLE SILT- BROWNISH GRAY SC Remarks: FAILURE CRITERIA = MAXIMUM EFFECTIVE STRESS RATIO TEST PERFORMED AS PER ASTM D4767


Piston Area: 0.00 in^2 Piston Friction: 0.00 lb Piston Weight: 0.00 lb Filter Strip Correction: 0.00 tsf Membrane Correction: 0.00 lb/in Correction Type: Uniform Specimen Height: 6.02 in Specimen Area: 6.36 in^2 Specimen Volume: 38.27 in^3

iquid I	Limit: 42		P	astic Limit:	: 24		Measured	Specific G	ravity: 2.67	
	Vertical Strain %	Total Vertical Stress tsf	Total Horizontal Stress tsf	Excess Pore Pressure tsf	A Parameter	Effective Vertical Stress tsf	Effective Horizontal Stress tsf	Stress Ratio	Effective p tsf	q tsf
123456789012345678901234567890123456789012345678901234567890123456789012345678901234567	0.00 0.03 0.03 0.13 0.17 0.22 0.31 0.41 0.55 0.65 0.74 0.93 1.02 1.12 1.31 1.40 1.59 1.79 1.88 1.98 2.17 2.25 2.17 2.56 4.84 3.41 5.13 1.79 6.28 7.79 8.28 8.57 9.45 9.45 9.45 9.45 1.79 8.28 8.57 9.45 9.45 9.45 9.45 9.45 9.45 9.45 9.45	6.8328 7.2441 7.3929 7.4756 7.5334 7.5828 7.6239 7.6609 7.6942 7.7275 7.75639 7.8118 7.8693 7.9715 8.0822 8.1321 8.1854 8.287 8.3365 8.4872 8.534 8.5806 8.6254 8.6254 8.9494 9.0543 9.1562 9.25457 9.3487 9.4383 9.6703 9.6703 9.6729 9.7494 9.8212 9.9525 10.016 10.134 10.19 10.225 10.331 10.382 10.472 10.548 10.793 10.659 10.696 10.728 10.763 10.763 10.793 10.849 10.8916 10.939 10.969 10.939 10.969 11.042 11.053 11.084 11.102	6.8328 8.8328 8.	0 0.21566 0.35649 0.45002 0.51768 0.5705 0.61231 0.64697 0.67558 0.69978 0.72014 0.773774 0.7526 0.7768 0.79881 0.80101 0.80156 0.79936 0.79771 0.79331 0.788 0.7799 0.76965 0.75975 0.7487 0.75264 0.71188 0.66787 0.72564 0.71188 0.66787 0.62331 0.58095 0.5672 0.52209 0.47862 0.31364 0.13093 0.35429 0.3135429 0.313562 0.23546 0.1997 0.16504 0.13093 0.098476 0.068218 0.03796 0.0088023 0.019255 -0.046212 -0.069868 -0.0946212 -0.069868 -0.0946212 -0.069868 -0.0946212 -0.069868 -0.09455 -0.118155 -0.2116 -0.23986 -0.25912 -0.27982	0.000 0.524 0.637 0.700 0.739 0.761 0.7781 0.784 0.782 0.7880 0.776 0.769 0.749 0.729 0.612 0.668 0.639 0.616 0.593 0.569 0.549 0.528 0.507 0.485 0.447 0.428 0.411 0.395 0.379 0.334 0.294 0.216 0.190 0.167 0.128 0.110 0.095 0.053 0.041 0.095 0.053 0.041 0.003 0.021 0.011	1.7924 1.9881 1.9881 1.9853 1.9952 1.9753 1.9753 1.9753 1.9735 1.99783 1.99783 1.99618 2.00528 2.00528 2.2343 2.24489 2.55594 2.55594 2.56198 2.6773 2.3437 2.4489 2.56198 2.6773 3.3495 2.6773 3.3495 2.77318 4.20856 4.20856 4.20856 4.20856 5.11707 4.84521 5.51707 5.51707 5.51707 5.51707 5.51707 5.51707 5.51707 5.51707 5.51707 5.51707 5.51707 5.51707 5.51707 5.51707 5.51707 5.667316 6.13936 6.13936 6.10618 6.1061	1.7924 1.5767 1.4359 1.3424 1.2747 1.2219 1.1801 1.1454 1.0926 1.0723 1.0547 1.0398 1.0156 0.99744 1.0954 0.99359 0.99359 0.99359 0.99359 0.99359 0.99369 0.99469 0.99909 1.0046 1.0134 1.0227 1.0326 1.0436 1.0436 1.0558 1.0668 1.0805 1.1245 1.1691 1.2252 1.2703 1.3138 1.3567 1.3985 1.4381 1.4788 1.5569 1.5569 1.5569 1.5724 1.6615 1.9316 1.93316 1.9316	1.000 1.261 1.390 1.479 1.550 1.614 1.670 1.723 1.819 1.862 1.902 1.902 2.094 2.258 2.311 2.3664 2.462 2.5505 2.585 2.647 2.697 2.920	1.7924 1.7824 1.7824 1.7824 1.7824 1.6638 1.6638 1.625 1.5969 1.57595 1.542 1.5302 1.5338 1.54291 1.6647 1.6647 1.6642 1.6672 1.6672 1.7218 1.7512 1.8499 1.8832 1.9175 1.952 2.0209 2.1247 2.3222 2.3869 2.4811 2.5717 2.6595 2.7421 2.8218 2.8218 2.8218 2.8218 2.8218 3.7653 3.1219 3.1	0 0.20567 0.20567 0.20567 0.20567 0.20567 0.39142 0.35031 0.37502 0.391502 0.44734 0.44734 0.44557 0.44557 0.44557 0.518825 0.56936 0.652472 0.664963 0.562472 0.670204 0.77271 0.75187 0.807319 0.887328 0.89678 0.94034 0.99958 1.0588 0.89678 1.055918 1.055918 1.055918 1.055918 1.055918 1.38437 1.4583 1.45292 1.555918

TRIAXIAL COMPRESSION TEST REPORT

Sy	mbol	O	Δ	П	
Te:	st No.	7 PSI	13.9 PSI	20.8 PSI	
	Diameter, in	2.8457	2.8382	2.837	
	Height, in	5.9839	5.9646	5.7075	
Initial	Water Content, %	13.01	13.76	17.65	
i <u> </u>	Dry Density, pcf	117.3	118.	109.8	
	Saturation, %	83.50	90.24	92.02	
	Void Ratio	0.41352	0.40495	0.50912	
	Water Content, %	15.40	14.54	18.60	
Shear	Dry Density, pcf	117.7	119.6	111.	
	Saturation, %	100.00	100.00	100.00	
Before	Void Ratio	0.40877	0.3861	0.49381	
m	Back Press., tsf	5.046	5.0443	5.0958	
Mi	nor Prin. Stress, tsf	0.49798	0.99651	1.4418	
Мс	x. Dev. Stress, tsf	3.6849	7.0909	7.9769	
Tir	ne to Failure, min	770.98	772.22	773.86	
Str	rain Rate, %/min	0.02	0.02	0.02	
В-	Value	.97	.95	.99	
Ме	asured Specific Gravity	2.65	2.65	2.65	
Lic	quid Limit	27	27	27	
PI	astic Limit	11	11	11	
PI	asticity Index	16	16	16	
Fa	ilure Sketch	NETS COLOR		-	

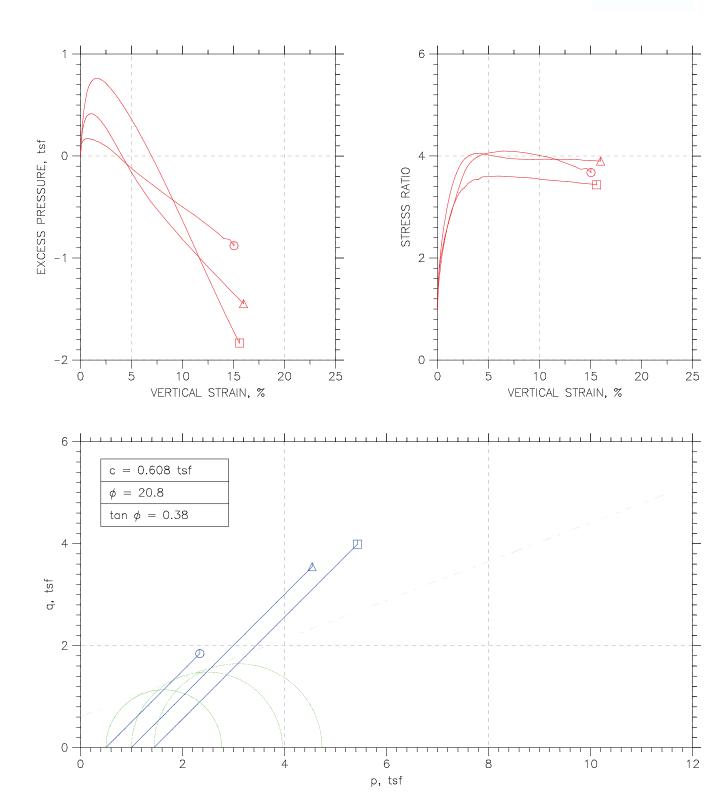
Project: COLETO CREEK FACILITY

Location: IPR-GDF SUEZ

Project No.: 60225561

Boring No.: B-4-1 S-7

Sample Type: 3" ST



Description: F-M SAND LITTLE CLAY TRACE SILT - BROWNISH GRAY SC

Remarks: FAILURE CRITERIA = MAXIMUM EFFECTIVE STRESS RATIO TEST PERFORMED AS PER ASTM D 4767

TRIAXIAL COMPRESSION TEST REPORT

Project: COLETO CREEK FACILITY	Location: IPR-GDF SUEZ	Project No.: 60225561			
Boring No.: B-4-1 S-7	Tested By: BCM	Checked By: WPQ			
Sample No.: S-7	Test Date: 12/1/11	Depth: 12.0'-14.0'			
Test No.: B-4-1 S-7	Sample Type: 3" ST	Elevation:			
Description: F-M SAND LITTLE CLAY TRACE SILT - BROWNISH GRAY SC					
Remarks: FAILURE CRITERIA = MAXIMUM	EFFECTIVE STRESS RATIO TEST PERFORME	ED AS PER ASTM D 4767			

Project: COLETO CREEK FACILITY Boring No.: B-4-1 S-7 Sample No.: S-7 Test No.: 7 PSI

Location: IPR-GDF SUEZ Tested By: BCM Test Date: 12/1/11 Sample Type: 3" ST

Project No.: 60225561 Checked By: WPQ Depth: 12.0'-14.0' Elevation: ----

Soil Description: F-M SAND LITTLE CLAY TRACE SILT - BROWNISH GRAY SC Remarks: FAILURE CRITERIA = MAXIMUM EFFECTIVE STRESS RATIO TEST PERFORMED AS PER ASTM D 4767

Filter Strip Correction: 0.00 tsf Membrane Correction: 0.00 lb/in Correction Type: Uniform Specimen Height: 5.98 in Specimen Area: 6.36 in^2 Specimen Volume: 38.06 in^3 Piston Area: 0.00 in^2 Piston Friction: 0.00 lb Piston Weight: 0.00 lb

Liquid Limit: 27 Plastic Limit: 11 Measured Specific Gravity: 2.65

	Time min	Vertical Strain %	Corrected Area in^2	Deviator Load lb	Deviator Stress tsf	Pore Pressure tsf	Horizontal Stress tsf	Vertical Stress tsf
123456789011231456789011234567890123456789041234454544546	0 5 10 25 30 001 35 001 45 001 55 001 55 001 55 001 55 001 10 120 130 140 150 160 170 180 190 200 210 220 230 240 270 330 330 360 390 420 450 480 510 540 570 600 630 660 660 660 660 660 660 660 66	0 0.086461 0.18589 0.28388 0.38187 0.47842 0.57785 0.6744 0.77094 0.86893 0.96692 1.0649 1.1659 1.3589 1.75549 1.7494 1.949 2.1333 2.5261 2.7178 2.91054 3.1054 3.2999 3.4959 3.4959 3.6904 4.6675 5.2482 7.527 7.597 8.7758 9.3565 9.943 10.5539 11.116 11.698 12.285 12.875 13.463	6.36 6.3655 6.3719 6.3781 6.3844 6.3906 6.397 6.4032 6.4094 6.4158 6.4221 6.4285 6.44285 6.4476 6.4605 6.4733 6.4862 6.5248 6.55119 6.55248 6.55377 6.55639 6.5771 6.56308 6.6444 6.66579 6.6173 6.6308 6.6444 6.7971 6.8396 6.8829 6.9719 7.0622 7.1082 7.2508 7.2508 7.2508 7.25098 7.3495	10 19.795 24.744 28.64 31.851 34.536 37.116 40.064 42.433 44.961 47.488 50.015 52.465 57.701 63.545 69.652 75.87 102.5 102.5 115.93 115.93 112.56 141.83 148.15 154.31 160.52 141.83 148.15 160.52 198.8 214.22 228.12 242.18 259.13 281.45 293.66 305.19 316.25 326.89 337.63 347.58 347.58	0 0.2239 0.2796 0.3233 0.38911 0.41775 0.4505 0.47667 0.50456 0.5324 0.56017 0.64434 0.70819 0.77472 0.84155 0.91162 0.98433 1.0579 1.1289 1.2013 1.2716 1.3417 1.4115 1.4769 1.5432 1.6087 1.7359 1.7926 1.9599 1.7926 2.1191 2.2692 2.4014 2.5333 2.6605 2.7794 2.8881 2.9939 3.0911 3.1822 3.2677 3.3526 3.4282 3.5056	5.046 5.1593 5.1856 5.209 5.2137 5.216 5.2165 5.216 5.2148 5.2125 5.2102 5.207 5.215 5.1652 5.1851 5.1751 5.1652 5.1851 5.1751 5.1652 5.1932 5.1851 5.1751 5.1652 5.1932 5.1851 5.1751 5.1652 5.1932 5.1851 5.1751 5.1652 5.1932 5.1851 5.1751 5.1652 5.1932 5.1851 5.1751 5.1652 5.1932 5.1851 5.1751 5.1652 5.1932 5.1851 5.1751 5.1652 5.1932 5.1851 5.1751 5.1652 5.1932 5	5.544 5.544	5.544 5.7679 5.8236 5.8236 5.8032 5.9032 5.9945 6.0486 6.0764 6.1042 6.1383 6.2522 6.3187 6.3856 6.4556 6.4556 6.5283 6.6019 6.729 7.0209 7.0209 7.0209 7.02161 7.2799 7.3366 7.6631 7.8132 7.9454 8.0773 8.2074 8.3234 8.4321 8.5351 8.7262 8.8117 8.8962 9.0496
47 48 49	720 750 770.98	14.047 14.632 15.049	7.3994 7.4501 7.4867	367.48 376.32 383.16	3.5757 3.6369 3.6849	4.2381 4.2264 4.1663	5.544 5.544 5.544	9.1197 9.1809 9.2289

Project: COLETO CREEK FACILITY Boring No.: B-4-1 S-7 Sample No.: S-7 Test No.: 7 PSI

Location: IPR-GDF SUEZ

Project No.: 60225561 Checked By: WPQ Depth: 12.0'-14.0' Elevation: ----Tested By: BCM
Test Date: 12/1/11
Sample Type: 3" ST

Soil Description: F-M SAND LITTLE CLAY TRACE SILT - BROWNISH GRAY SC Remarks: FAILURE CRITERIA = MAXIMUM EFFECTIVE STRESS RATIO TEST PERFORMED AS PER ASTM D 4767

Piston Area: 0.00 in^2 Piston Friction: 0.00 lb Piston Weight: 0.00 lb Filter Strip Correction: 0.00 tsf Membrane Correction: 0.00 lb/in Correction Type: Uniform Specimen Height: 5.98 in Specimen Area: 6.36 in^2 Specimen Volume: 38.06 in^3

Liquid Limit: 27 Measured Specific Gravity: 2.65

iquid L	imit: 27		Р	lastic Limit:	: 11		Measured	Specific G	ravity: 2.65	
	Vertical Strain %	Total Vertical Stress tsf	Total Horizontal Stress tsf	Excess Pore Pressure tsf	A Parameter	Effective Vertical Stress tsf	Effective Horizontal Stress tsf	Stress Ratio	Effective p tsf	q tsf
1 3 4 5 6 7 8 9 10 11 12 13 14 15 17 18 19 21 22 23 24 25 26 27 28 29 30 31 33 34 35 36 37 38 38 38 38 38 38 38 38 38 38	0.00 0.19 0.28 0.38 0.48 0.58 0.67 0.77 0.87 1.06 1.16 1.35 1.75 1.95 2.13 2.72 2.91 3.30 3.69 4.08 4.28 4.47 4.67 5.84 6.43 7.60 8.19 8.78 9.94 10.53 11.12 11.72 12.28 12.87	5.544 5.7679 5.8236 5.8673 5.9032 5.9331 5.9618 5.9945 6.0207 6.0486 6.0764 6.1883 6.61307 6.1883 6.6529 6.7453 6.8156 6.5283 6.6019 6.7453 6.8156 6.5283 7.0209 7.0872 7.1527 7.2161 7.2799 7.3366 7.5036 7.6631 7.8132 7.9454 8.0773 8.2045 8.3234 8.5379 8.6351 8.7262 8.8817	5.544 5.5544 5.5545 5.5544 5.5545 5.5545 5.5545 5.5545 5.5545 5.5545 5.5545 5.5545 5.5545 5.5545 5.5545 5.5545 5.5545 5.	0 0.11333 0.13962 0.1548 0.16298 0.16766 0.16766 0.16999 0.17058 0.16999 0.16882 0.16649 0.16415 0.16181 0.15539 0.14721 0.13903 0.1291 0.11917 0.10749 0.094635 0.081783 0.066595 0.050238 0.033297 0.015772 -0.0017525 -0.019862 -0.037971 -0.055496 -0.073021 -0.090546 -0.14078 -0.18927 -0.23425 -0.27865 -0.27865 -0.32304 -0.36744 -0.41067 -0.4539 -0.49537 -0.53626 -0.57599 -0.61805 -0.66478 -0.66478 -0.66478 -0.66478 -0.66478 -0.66478 -0.66478 -0.70918	0.000 0.506 0.499 0.479 0.454 0.431 0.407 0.379 0.357 0.335 0.313 0.293 0.276 0.241 0.208 0.179 0.153 0.131 0.109 0.089 0.072 0.055 0.040 0.025 0.011 -0.001 -0.013 -0.024 -0.033 -0.042 -0.033 -0.042 -0.051 -0.072 -0.089 -0.103 -0.1065 -0.173 -0.181 -0.181 -0.198 -0.198 -0.198	0.49798 0.60855 0.63796 0.66648 0.6942 0.71943 0.74574 0.7779 0.80466 0.83372 0.86389 0.894 0.92288 0.98693 1.059 1.1337 1.2104 1.3748 1.4612 1.5451 1.6327 1.7194 1.8064 1.8937 1.9766 2.061 2.1446 2.2256 2.3069 2.3811 2.5983 2.8063 3.178 3.3543 3.5259 3.884 3.9873 4.1254 4.2562 4.3837 4.5154 4.6354	0.49798 0.38465 0.35836 0.34317 0.335 0.33032 0.32799 0.3274 0.32799 0.32915 0.33149 0.33383 0.33616 0.34259 0.35077 0.35895 0.36888 0.37881 0.39049 0.40334 0.4162 0.43138 0.44774 0.46468 0.48221 0.49973 0.551784 0.53595 0.55347 0.571 0.58852 0.63876 0.68725 0.73223 0.77663 0.82102 0.86542 0.90865 0.9187 0.99335 1.0342 1.074 1.116 1.1628 1.2072	1.000 1.582 1.780 1.942 2.072 2.178 2.274 2.376 2.453 2.533 2.606 2.678 2.745 2.881 3.019 3.158 3.281 3.407 3.623 3.712 3.782 3.783 3.887 3.927 3.955 3.980 4.002 4.021 4.040 4.046 4.083 4.099 4.099 4.099 4.099 4.074 4.075 9.074 4.074 6.074	0.49798 0.4966 0.49816 0.50483 0.5146 0.52488 0.53686 0.55265 0.56632 0.58148 0.79769 0.61391 0.62952 0.66476 0.70486 0.7463 0.78965 0.88265 0.93229 0.98063 1.032 1.0836 1.1355 1.1355 1.1355 1.1379 1.2382 1.2894 1.3403 1.3406	0 0.11195 0.1398 0.16165 0.1796 0.1796 0.19455 0.20888 0.22525 0.23834 0.22525 0.28009 0.29336 0.32217 0.35409 0.32217 0.35409 0.32217 0.45581 0.42077 0.45584 0.49216 0.52895 0.56444 0.6005882 0.67085 0.70573 0.73846 0.70573 0.73846 1.2007 1.2667 1.3302 1.3897 1.4441 1.5911 1.6763 1.7141
46 47 48 49	13.46 14.05 14.63 15.05	9.0496 9.1197 9.1809 9.2289	5.544 5.544 5.544 5.544	-0.75591 -0.8079 -0.81958 -0.87975	-0.216 -0.226 -0.225 -0.239	4.7595 4.8816 4.9544 5.0627	1.2539 1.3059 1.3176 1.3777	3.796 3.738 3.760 3.675	3.0067 3.0937 3.136 3.2202	1.7528 1.7879 1.8184 1.8425

Project: COLETO CREEK FACILITY Boring No.: B-4-1 S-7 Sample No.: S-7 Test No.: 13.9 PSI

Location: IPR-GDF SUEZ Tested By: BCM Test Date: 12/1/11 Sample Type: 3" ST

Project No.: 60225561 Checked By: WPQ Depth: 12.0'-14.0' Elevation: ----

Soil Description: F-M SAND LITTLE CLAY TRACE SILT - BROWNISH GRAY SC Remarks: FAILURE CRITERIA = MAXIMUM EFFECTIVE STRESS RATIO TEST PERFORMED AS PER ASTM D 4767

Filter Strip Correction: 0.00 tsf Membrane Correction: 0.00 lb/in Correction Type: Uniform Specimen Height: 5.96 in Specimen Area: 6.33 in^2 Specimen Volume: 37.74 in^3 Piston Area: 0.00 in^2 Piston Friction: 0.00 lb Piston Weight: 0.00 lb

Liquid Limit: 27 Plastic Limit: 11 Measured Specific Gravity: 2.65

•							
Time min	Vertical Strain %	Corrected Area in^2	Deviator Load 1b	Deviator Stress tsf	Pore Pressure tsf	Horizontal Stress tsf	Vertical Stress tsf
1 0 2 5.0001 3 10 4 15 5 20 6 20 6 7 30.001 8 35.001 9 40.001 10 45.001 11 50.001 11 5	0.088226 0.18929 0.29035 0.39301 0.49407 0.59834 0.7026 0.80687 0.91274 1.0154 1.1213 1.2223 1.4357 1.649 2.0661 2.273 2.4816 2.6885 2.8954 3.1056 3.3157 3.5242 3.736 3.9461 4.1563 4.3648 4.5717 4.7787 4.984 5.6016 6.224 6.8335 7.4495 8.0687 8.6911 9.3087 9.9279 10.552 11.1797 11.797 12.416 13.033 13.659 14.283 14.283	6.3266 6.3322 6.3386 6.33451 6.3516 6.3516 6.3647 6.3714 6.3781 6.3849 6.3984 6.4049 6.4188 6.4464 6.4601 6.4738 6.48601 6.5014 6.5014 6.5153 6.5294 6.5436 6.5577 6.5722 6.5865 6.601 6.6154 6.6585 6.7465 6.7465 6.7465 6.7465 6.7465 6.7465 6.7907 6.8359 6.8819 6.924 7.073 7.1228 7.024 7.073 7.1228 7.32748 7.32748 7.3235 7.3808 7.3808 7.3808	0 42.594 57.838 67.028 74.03 79.864 85.335 90.44 95.837 101.02 106.41 111.81 117.43 128 139.66 187.556 187.56 187.56 187.81 200.21 212.32 224.42 236.46 248.35 270.88 270.88 270.88 270.88 281.75 292.4 302.54 312.53 322.3 349.8 375.8 445.56 468.98 422.95 445.56 468.98 469.1 516.31 540.67 563.06 679.18 701.93	0 0.48432 0.65698 0.76059 0.83918 0.9044 0.96534 1.022 1.0819 1.1391 1.1987 1.2582 1.32 1.4358 1.5633 2.2172 2.3463 2.4747 2.6018 2.7267 2.3463 2.4747 2.6018 2.7267 2.3463 2.4747 2.6018 2.7267 2.3463 2.4747 2.6018 2.7267 2.3463 2.4747 2.6018 2.7267 2.3463 2.4747 2.6018 2.7267 2.3463 2.4747 2.6018 2.7267 2.3463 2.4747 2.6018 2.7267 2.3463 2.4747 2.6018 2.7267 2.9611 3.0732 3.1824 3.2856 3.3868 3.4851 3.7579 4.011 4.2378 4.4548 4.6616 4.8733 5.079 5.2925 5.5038 5.6918 8.6926 6.6924 6.7979	5.0443 5.1902 5.3816 5.3811 5.4104 5.4526 5.4526 5.4587 5.4581 5.4554 5.4271 5.4581 5.4271 5.3805 5.35227 5.3222 5.2895 5.219 5.1811 5.107 5.0693 4.9949 4.9949 4.9583 4.7863 4.7863 4.6926 4.4544 4.3803 4.7863 4.46926 4.4544 4.3803 4.7863 4.1007 4.3803 4.1007 4.3803 4.1007 4.3803 4.1007 4.3803 4.1007 4.3803 4.7863 4.1007 4.3803 4.7863 4.	6.0408 6.	6.0408 6.5251 6.6978 6.8014 6.88 6.9452 7.0061 7.0628 7.1227 7.1799 7.2395 7.299 7.3608 7.4766 7.6041 7.7328 7.8633 7.9933 8.1251 8.5155 8.6426 8.7675 8.8869 9.0019 9.114 9.2232 9.3264 9.4276 9.5259 9.7987 10.279 10.496 10.702 10.112 11.333 11.545 11.733 11.734
48 750 49 772.22	15.525 15.991	7.4893 7.5309	724.47 741.68	6.9648 7.0909	3.643 3.5959	6.0408 6.0408	13.006 13.132

Project: COLETO CREEK FACILITY Boring No.: B-4-1 S-7 Sample No.: S-7 Test No.: 13.9 PSI

Location: IPR-GDF SUEZ Tested By: BCM Test Date: 12/1/11 Sample Type: 3" ST

Project No.: 60225561 Checked By: WPQ Depth: 12.0'-14.0' Elevation: ----

Soil Description: F-M SAND LITTLE CLAY TRACE SILT - BROWNISH GRAY SC Remarks: FAILURE CRITERIA = MAXIMUM EFFECTIVE STRESS RATIO TEST PERFORMED AS PER ASTM D 4767

Specimen Height: 5.96 in Specimen Area: 6.33 in^2 Specimen Volume: 37.74 in^3

Piston Area: 0.00 in^2 Piston Friction: 0.00 lb Piston Weight: 0.00 lb

Filter Strip Correction: 0.00 tsf Membrane Correction: 0.00 lb/in Correction Type: Uniform

			_						
Liquid Limit: 27		P	lastic Limit	: 11		Measured	Specific G	ravity: 2.65	
Vertical Strain %	Total Vertical Stress tsf	Total Horizontal Stress tsf	Excess Pore Pressure tsf	A Parameter	Effective Vertical Stress tsf	Effective Horizontal Stress tsf	Stress Ratio	Effective p tsf	q tsf
1 0.00 2 0.09 3 0.19 4 0.29 5 0.39 6 0.49 7 0.60 8 0.70 9 0.81 10 0.91 11 1.02 12 1.12 13 1.22 14 1.44 15 1.65 16 1.86 17 2.07 18 2.27 19 2.48 20 2.69 21 2.90 22 3.11 23 3.52 24 3.52 25 3.74 26 3.95 27 4.16 28 4.36 29 4.57 30 4.78 31 4.98 32 5.60 33 6.22 34 7.45 36 8.07 37 8.69 38 9.31 39 9.93 40 10.55 41 11.80 43 12.42 44 13.03 45 11.80 43 12.42 44 13.03 45 13.66 47 14.90 48 15.52 49 15.99	6.0408 6.5251 6.6978 6.8014 6.885 7.0061 7.0628 7.1227 7.1799 7.2395 7.299 7.3608 7.4766 7.6041 7.7328 7.8633 7.9933 8.1251 8.258 8.3871 8.5155 8.6426 8.7675 8.8869 9.0019 9.114 9.2232 9.3264 9.4276 9.5259 9.725 9.725 10.279 10.052 10.279 10.496 10.702 10.914 11.12 11.333 11.545 11.733 11.545 11.733 11.545 11.733 11.545 11.733 11.935 12.117 12.312 12.666 12.839 13.006 13.132	6.0408 6.0408	0.1459 0.23854 0.29734 0.33673 0.36613 0.3861 0.39886 0.40829 0.41217 0.41439 0.41384 0.41107 0.40053 0.38277 0.36169 0.33617 0.30844 0.27793 0.2452 0.20914 0.17474 0.13702 0.099854 0.062686 0.024963 -0.012204 -0.15699 -0.25796 -0.35171 -0.43769 -0.51536 -0.59025 -0.66403 -0.73559 -0.8066 -0.8765 -0.94362 -1.0124 -1.0784 -1.1439 -1.2077 -1.2737 -1.3375 -1.4013 -1.4484	0.000 0.301 0.363 0.391 0.405 0.400 0.390 0.377 0.362 0.346 0.329 0.311 0.245 0.214 0.184 0.158 0.133 0.111 0.089 0.071 0.053 0.07 0.022 0.008 -0.046 -0.036 -0.045 -0.069 -0.088 -0.013 -0.116 -0.127 -0.136 -0.145 -0.152	0.99651 1.3349 1.4149 1.4598 1.499 1.5757 1.6701 1.7235 1.7809 1.8409 1.9055 2.03171 2.3268 2.4828 2.6406 2.8029 2.9685 3.1337 3.2965 3.4613 3.2965 3.4613 3.78 3.9327 4.0818 4.5053 4.6386 5.0124 5.6667 6.2483 6.8111 7.0956 7.3768 7.6319 7.9032 8.1511 8.4112 8.66646 9.1319 9.3626 9.5358	0.99651 0.85061 0.75797 0.69917 0.65978 0.63038 0.61041 0.59765 0.58822 0.58434 0.58212 0.58267 0.58545 0.63482 0.66034 0.63482 0.66034 0.71858 0.75131 0.78737 0.82177 0.85949 0.89666 0.93383 0.97155 1.0087 1.0459 1.0459 1.1186 1.1535 1.2545 1.1186 1.1535 1.2545 1.3482 1.4342 1.5119 1.5868 1.6605 1.7321 1.8031 1.873 1.9401 2.0089 2.0749 2.1404 2.2042 2.2702 2.334 2.3978 2.4449	1.000 1.569 1.867 2.088 2.272 2.435 2.581 2.710 2.839 2.959 3.159 3.959 3.159 3.959 3.951 3.9665 3.9951 4.017 4.048 4.047 4.048 4.048 4.047 4.048 4.048 4.048 4.048 4.048 4.049 3.9955 3.9955 3.9955 3.9955 3.9935 3.935	0.99651 1.0928 1.0865 1.0795 1.0794 1.0826 1.0931 1.1087 1.1292 1.1539 1.1815 1.2418 1.2455 1.3139 1.4808 1.5716 1.6607 1.8599 1.9605 2.0591 2.1604 2.26 2.3569 2.4521 2.5453 2.6371 2.7253 2.8119 2.8961 3.1334 3.5531 3.7393 3.9175 4.2716 4.4494 4.6249 4.786 4.9761 5.113 5.2758 5.4353 5.2758 5.4353 5.57329 5.8802 5.9904	0 0.24216 0.32849 0.3803 0.41959 0.4522 0.48267 0.51101 0.54094 0.56956 0.59937 0.62909 0.66002 0.718166 0.84599 0.91125 0.97622 1.1086 1.1731 1.2374 1.3009 1.3633 1.4231 1.4806 1.5912 1.6934 1.7428 1.6934 1.7439 2.2274 2.3308 2.7519 2.8459 2.2374 2.3398 2.4367 2.5395 2.6463 2.7519 2.8459 2.3395 2.3395 2.3395 2.4367 2.5395 2.6463 2.7519 2.8459 2.3395

Project: COLETO CREEK FACILITY Boring No.: B-4-1 S-7 Sample No.: S-7 Test No.: 20.8 PSI

Liquid Limit: 27

Location: IPR-GDF SUEZ Tested By: BCM Test Date: 12/1/11 Sample Type: 3" ST

Project No.: 60225561 Checked By: WPQ Depth: 12.0'-14.0' Elevation: ----

Soil Description: F-M SAND LITTLE CLAY TRACE SILT - BROWNISH GRAY SC Remarks: FAILURE CRITERIA = MAXIMUM EFFECTIVE STRESS RATIO TEST PERFORMED AS PER ASTM D 4767

Specimen Height: 5.71 in Specimen Area: 6.32 in^2 Specimen Volume: 36.08 in^3

Piston Area: 0.00 in^2 Piston Friction: 0.00 lb Piston Weight: 0.00 lb

Plastic Limit: 11

Filter Strip Correction: 0.00 tsf Membrane Correction: 0.00 lb/in Correction Type: Uniform Measured Specific Gravity: 2.65

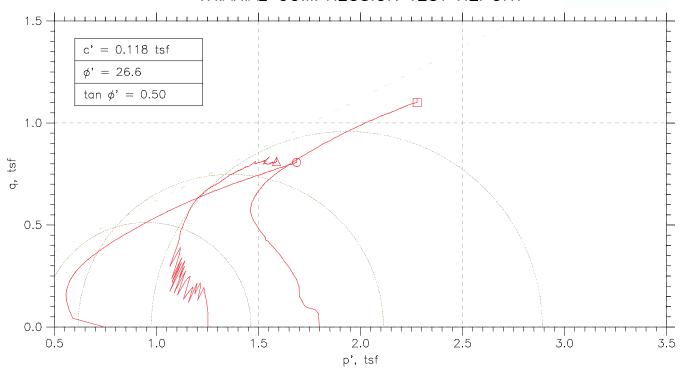
Time min	quiu Limit				astic Limit.	11		Measured	i specific di
2 5.0038 0.074905 6.3261 45.054 0.51278 5.2246 6.5376 7.2 3 10.004 0.17378 6.3324 62.257 0.70787 5.3665 6.5376 7.2 4 15.004 0.27265 6.3366 72.957 0.82871 5.4806 6.5376 7.2 5 20.004 0.4749 6.3515 86.279 0.97804 5.636 6.5376 7.4 6 25.004 0.4749 6.3515 86.279 0.97804 5.636 6.5376 7.4 7 30 0.57677 6.358 90.422 1.024 5.6366 6.5376 7.5 8 35 0.67415 6.3643 93.779 1.0609 5.7316 6.5376 7.5 9 40 0.77752 6.3709 97.975 1.1073 5.7648 6.5376 7.5 10 45.002 0.87939 6.3774 100.65 1.1363 5.7909 6.5376 7.6 11 50.003 0.97976 6.3839 104.95 1.1837 5.8104 6.5376 7.7 12 55.003 1.0801 6.3904 107.84 1.215 5.8262 6.5376 7.7 13 60.003 1.1835 6.3971 111.51 1.255 5.8262 6.5376 7.7 14 70.003 1.3842 6.4101 117.22 1.3167 5.8539 6.5376 7.8 15 80.004 1.5895 6.4235 123.99 1.3898 5.8583 6.5376 7.9 16 90.004 1.7887 6.4365 130.13 1.4556 5.8555 6.5376 7.9 17 100 1.9925 6.4699 137.42 1.534 5.8463 6.5376 8.0 18 110 2.1962 6.4633 144.6 1.6108 5.8338 6.5376 8.0 18 110 2.1962 6.4699 137.42 1.534 5.8463 6.5376 8.2 21 150 3.0097 6.5175 175.55 1.9393 5.7523 6.5376 8.2 22 150 3.0097 6.5039 165.9 1.886 5.8388 6.5376 8.2 24 170 3.4142 6.5448 191.81 2.1101 5.7018 6.5376 8.2 25 150 3.0097 6.5552 6.4901 158.24 1.7555 5.7799 6.5376 8.2 26 190 3.8127 6.6901 158.24 1.7555 5.7799 6.5376 8.2 27 200 4.0164 6.5899 6.5039 165.9 1.8365 5.7626 6.5376 8.2 28 210 4.2187 6.5992 6.4901 158.27 2.2473 5.5849 6.5376 8.2 29 120 2.3955 6.4765 151.58 1.6851 5.8166 6.5376 8.2 20 130 2.5992 6.4901 158.24 1.7555 5.7799 6.5376 8.2 21 150 3.0097 6.5175 175.55 1.9393 5.7523 6.5376 8.2 22 150 3.0097 6.5175 175.55 1.9393 5.7523 6.5376 8.2 24 170 3.4142 6.5448 191.81 2.1101 5.7018 6.5376 8.2 25 180 3.6119 6.5889 6.4289 2.24.32 2.4473 5.5849 6.5376 8.3 26 190 3.8127 6.6779 206.81 2.2657 5.6442 6.5376 8.3 27 200 4.0164 6.589 7.793 8.509 8.509 8.509 8.5384 6.5376 9.2 33 300 6.6389 6.72743 6.8815 2.2657 5.6442 6.5376 9.2 34 40 500 0.2887 7.0936 6.444 9.48112 4.6665 6.5376 11. 39 480 9.6658 6.9978 9.771 3.36.99 3.5833 5.1589 6.5376 11. 40 510 10.283 7.7039 6.544.99 6.644.99 4.8112 4.6665 6.5376 11			Strain	Area	Load	Stress	Pressure	Stress	Vertical Stress tsf
	2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 31 33 34 44 44 44 45 46 47 48 48 48 48 48 48 48 48 48 48	5.0038 10.004 15.004 20.004 25.004 25.004 30 35 40 45.002 50.003 55.003 670.003 80.004 90.004 110 120 130 140 150 160 170 180 190 220 230 240 270 330 360 360 370 370 370 370 370 370 370 370 370 37	0.074905 0.17378 0.27263 0.37303 0.4749 0.57677 0.674715 0.77752 0.87939 0.97976 1.0801 1.1835 1.3842 1.5895 1.7887 1.9925 2.3955 2.3955 2.3955 2.3955 2.3955 2.3955 2.3955 2.419 3.4142 3.6119 3.8127 4.4164 4.2187 4.4164 4.6187 4.6187 5.61	6.3261 6.3324 6.3324 6.3324 6.3324 6.3324 6.33515 6.3455 6.3583 6.3774 6.3839 6.3971 6.4235 6.4401 6.4235 6.4465 6.4465 6.4465 6.55175 7.55175	45.054 62.257 72.957 80.614 86.279 90.422 93.775 100.65 104.95 107.84 111.52 123.99 130.13 137.42 144.6 151.58 158.24 165.55 182.73 191.81 199.81 206.81 224.32 224.32 224.24 242.73 250.97 278.4 307.61 336.99 367.41 398.56 431.13 464.49 497.43 529.79 564.88 599.79 564.88 599.79 5671.35 704.92 738.01 771.63 805.72	0.51278 0.70787 0.8287 0.91477 0.97804 1.0609 1.1073 1.1363 1.1837 1.2155 1.3167 1.3898 1.4556 1.534 1.66108 1.6851 1.7555 1.8365 1.93993 2.0145 2.1101 2.1887 2.2657 2.3452 2.4473 2.5501 2.637 2.7207 2.9988 3.2921 3.5833 3.8816 4.1827 4.4949 4.8112 5.4138 5.7335 6.0491 6.6755 6.9608 7.2373 7.514 7.7897	5.2246 5.3665 5.4866 5.6898 5.7648 5.77648 5.77648 5.8262 5.82	6.5376 6.5376	6.5376 7.0504 7.2455 7.3663 7.4524 7.5156 7.5616 7.5985 7.6449 7.6739 7.7213 7.7526 7.7926 7.8543 7.9274 7.9932 8.0716 8.1484 8.2227 8.2931 8.3741 8.4763 8.8033 8.8828 8.9849 9.0877 9.1746 9.2583 9.5364 9.2583 9.5364 9.2583 11.349 11.656 11.9571 12.587 12.587 12.587 12.587 14.052 14.327 14.514

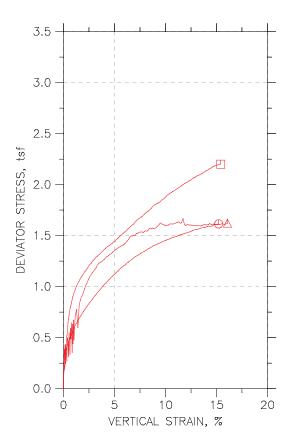
Project: COLETO CREEK FACILITY Boring No.: B-4-1 S-7 Sample No.: S-7 Test No.: 20.8 PSI Location: IPR-GDF SUEZ

Tested By: BCM
Test Date: 12/1/11
Sample Type: 3" ST

Project No.: 60225561 Checked By: WPQ Depth: 12.0'-14.0' Elevation: ----

Soil Description: F-M SAND LITTLE CLAY TRACE SILT - BROWNISH GRAY SC Remarks: FAILURE CRITERIA = MAXIMUM EFFECTIVE STRESS RATIO TEST PERFORMED AS PER ASTM D 4767


Filter Strip Correction: 0.00 tsf Membrane Correction: 0.00 lb/in Correction Type: Uniform Piston Area: 0.00 in^2 Piston Friction: 0.00 lb Piston Weight: 0.00 lb Specimen Height: 5.71 in Specimen Area: 6.32 in^2 Specimen Volume: 36.08 in^3


Liquid Limit: 27 Plastic Limit: 11 Measured Specific Gravity: 2.65

Vertical Vertical									•	•	
4 0.27 7.3663 6.5376 0.38475 0.404 1.8857 1.057 1.784 1.4714 0.41435 5 0.37 7.4524 6.5376 0.47279 0.517 1.8838 0.96898 1.944 1.4264 0.45738 6 0.47 7.5156 6.5376 0.54018 0.552 1.8796 0.9016 2.085 1.3906 0.48902 0.78 7.5616 6.5376 0.5382 0.599 1.8718 0.8478 2.208 1.3598 0.51198 8 0.67 7.5985 6.5376 0.63582 0.599 1.8718 0.8478 2.208 1.3598 0.51198 9 0.78 7.6449 6.5376 0.66897 0.604 1.8801 0.7728 2.433 1.3264 0.53367 0.68897 0.604 1.8801 0.7728 2.433 1.3264 0.53367 0.6889 0.599 1.8718 0.8718 0.8718 0.8718 0.8878 0.599 1.8718 0.8718 0.8718 0.8718 0.8718 0.8718 0.8718 0.8718 0.8878 0.7619 0.88 7.6739 6.5376 0.69502 0.612 1.883 0.74672 2.522 1.3149 0.58818 11 0.98 7.7236 6.5376 0.73108 0.604 1.9108 0.77213 2.668 1.3319 0.59183 11 0.98 7.7236 6.5376 0.73108 0.604 1.9108 0.77119 2.668 1.319 0.59183 11 0.88 7.7526 6.5376 0.73108 0.604 1.9264 0.77119 2.668 1.3189 0.60749 1.4818 0.77218 0.77218 0.60749 0.60889 2.776 1.3262 0.60711 0.77218 0.60749 0.60889 2.776 1.3262 0.60751 0.77218 0.60749 0.60889 2.776 1.3262 0.60751 0.77218 0.60749 0.60889 2.776 1.3262 0.60751 0.77218 0.		Strain	Vertical Stress	Horizontal Stress	Pore Pressure		Vertical Stress	Horizontal Stress			q tsf
46 13.90 13.775 6.5376 -1.4885 -0.206 10.168 2.9303 3.470 6.5489 3.6186 47 14.50 14.052 6.5376 -1.6151 -0.215 10.571 3.0569 3.458 6.8139 3.757 48 15.12 14.327 6.5376 -1.7395 -0.223 10.971 3.1813 3.449 7.0762 3.8948 49 15.61 14.514 6.5376 -1.8341 -0.230 11.253 3.2759 3.435 7.2643 3.9884	234567890123456789012345678901233456789012344567890123456789012344567890123456789001234567890124567890100000000000000000000000000000000000	0.07 0.17 0.27 0.37 0.47 0.58 0.67 0.78 0.88 1.08 1.18 1.38 1.59 1.79 1.20 2.40 2.60 2.81 3.01 3.21 3.41 3.81 4.02 4.22 4.42 4.62 4.42 4.62 4.62 4.7.86 8.46 9.67 10.28 10.88	7.0504 7.2455 7.34524 7.5156 7.5616 7.56489 7.6739 7.75216 7.7526 7.7526 7.79274 7.9932 8.0716 8.2227 8.2931 8.3741 8.4769 8.5521 8.6427 8.7263 8.8828 8.9849 9.0877 9.1746 9.2586 9.1746 9.121 10.419 11.349 11.349 11.656 11.951 12.287 12.587 12.587 12.587 12.587 12.587 14.327	6.5376 6.5376	0.12879 0.27063 0.38475 0.47279 0.54018 0.59398 0.63582 0.66897 0.69506 0.71462 0.73288 0.7581 0.76244 0.75918 0.75249 0.73799 0.72277 0.70212 0.68039 0.65647 0.63202 0.60593 0.57768 0.54833 0.51898 0.48909 0.45758 0.42497 0.39182 0.28911 0.17879 0.063039 0.054887 -0.17716 -0.30215 -0.42932 -0.42932 -0.56083 -0.95971 -1.095 -1.2271 -1.3581 -1.4885 -1.6151 -1.7395	0.251 0.382 0.464 0.517 0.552 0.580 0.599 0.604 0.612 0.576 0.549 0.522 0.408 0.409 0.400 0.370 0.339 0.314 0.287 0.264 0.221 0.200 0.179 0.161 0.144 0.096 0.054 0.018 -0.014 -0.042 -0.067 -0.089 -0.110 -0.128 -0.144 -0.152 -0.172 -0.184 -0.175 -0.203	1.8258 1.879 1.8838 1.8796 1.8838 1.8796 1.8831 1.9108 1.9264 1.9264 1.9264 1.9264 1.9253 2.03146 2.1382 2.2253 2.3146 2.4941 2.4951 2.5979 2.7246 2.8242 2.9458 3.3298 3.3299 3.5343 3.6538 3.7707 4.1515 4.9621 5.8017 6.2388	1.057 0.96898 0.9016 0.8478 0.80595 0.7728 0.74672 0.72715 0.71139 0.69889 0.68359 0.69129 0.70379 0.713965 0.76139 0.7853 0.80976 0.83584 0.8641 0.89345 0.92279 0.95268 0.9842 1.0168 1.05 1.1527 1.263 1.3787 1.4967 1.6189 1.7439	1.391 1.604 1.784 1.944 2.085 2.208 2.316 2.433 2.522 2.628 2.796 3.046 3.132 3.289 3.344 3.373 3.469 3.536 3.536 3.591 3.569 3.591 3.591 3.591 3.594 3.577 3.571 3.556 3.577 3.578 3.577 3.571 3.576 3.577 3.578 3.577 3.578 3.578 3.594 3.594 3.594 3.594 3.594 3.594 3.594 3.594 3.594 3.594 3.594 3.594 3.594 3.594 3.594 3.596 3.591 3.596 3.591 3.594 3.596 3.591 3.596 3.591 3.596 3.591	1.5694 1.5251 1.4714 1.4264 1.3906 1.3598 1.3364 1.3149 1.319 1.3189 1.3264 1.342 1.3742 1.4104 1.4583 1.5092 1.5616 1.6174 1.6797 1.7549 1.817 1.8909 1.9564 2.0263 2.0954 2.1763 2.2593 2.353 2.3103 2.6521 2.909 3.1704 4.2767 4.5616 4.841 5.1345 5.426 5.7159 6.0066 6.2803 6.5489 6.8139 7.0762	0.25639 0.35394 0.415738 0.445738 0.48902 0.51198 0.53047 0.55363 0.56816 0.59183 0.60749 0.62751 0.76699 0.80542 0.84255 0.87774 0.91827 0.96965 1.0072 1.055 1.0948 1.1726 1.2236 1.2751 1.3185 1.1726 1.2236 1.2751 1.3185 1.1726 1.2236 1.2751 1.3185 1.1726 1.2236 1.2755 1.9408 2.0914 2.2475 2.4056 2.559 2.7069 2.8667 3.0245 3.1791 3.3378 3.4804 3.6148 3.61757 3.8948

TRIAXIAL COMPRESSION TEST REPORT

Sy	mbol	0	Δ		
Te:	st No.	10.4 PSI	17.4 PSI	24.3 PSI	
	Diameter, in	2.722	2.8299	2.6157	
	Height, in	6.0571	5.4106	5.9323	
Initial	Water Content, %	5.02	7.46	5.91	
i <u> </u>	Dry Density, pcf	121.2	121.3	120.9	
	Saturation, %	36.18	53.82	42.11	
	Void Ratio	0.36923	0.3684	0.37292	
7	Water Content, %	13.55	13.79	12.58	
Shear	Dry Density, pcf	122.	121.5	124.4	
	Saturation, %	100.00	100.00	100.00	
Before	Void Ratio	0.36021	0.36668	0.33456	
m	Back Press., tsf	5.0425	5.0399	5.042	
Mir	nor Prin. Stress, tsf	0.74626	1.2529	1.798	
Мс	ıx. Dev. Stress, tsf	1.6147	1.6669	2.202	
Tir	ne to Failure, min	3930	2700	3930	
Str	rain Rate, %/min	0.006	0.006	0.006	
В-	Value	.95	.95	.97	
Ме	asured Specific Gravity	2.66	2.66	2.66	
Lic	quid Limit	40	40	40	
Plo	astic Limit	24	24	24	
Plo	asticity Index	16	16	16	
Fa	ilure Sketch				

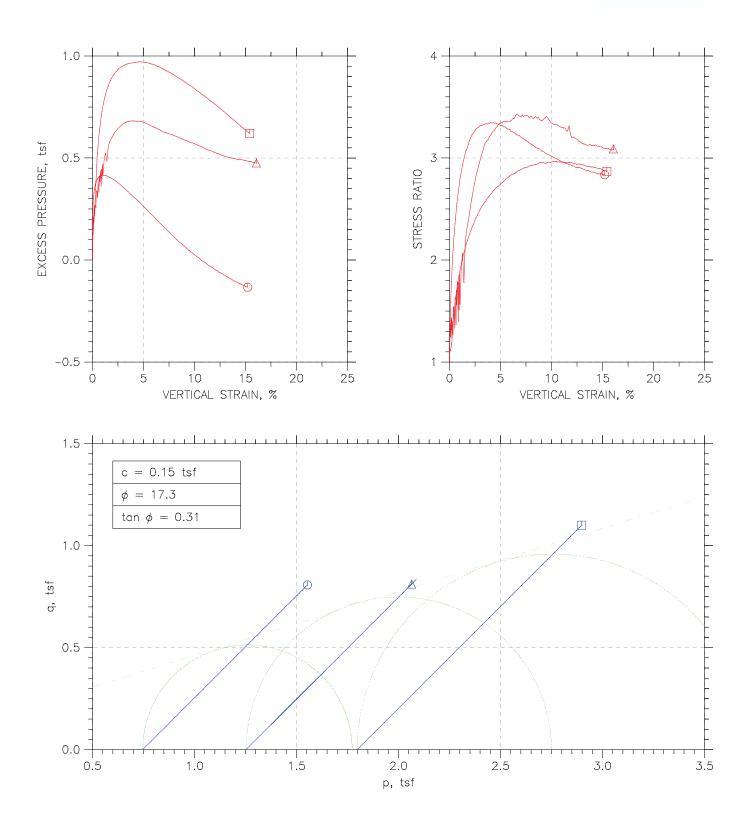
Project: COLETO CREEK FACILITY

Location: IPR-GDF SUEZ

Project No.: 60225561

Boring No.: B-4-1 S-13

Sample Type: 3" ST



Description: CLAYEY F-C SAND LITTLE SILT - BROWNISH GRAY SC

Remarks: FAILURE CRITERIA = MAXIMUM EFFECTIVE STRESS RATIO TEST PERFORMED AS PER ASTM D4767

TRIAXIAL COMPRESSION TEST REPORT

Location: IPR-GDF SUEZ	Project No.: 60225561				
Tested By: BCM	Checked By: WPQ				
Test Date: 12/2/11	Depth: 24.0'-26.0'				
Sample Type: 3" ST	Elevation:				
Description: CLAYEY F-C SAND LITTLE SILT - BROWNISH GRAY SC					
EFFECTIVE STRESS RATIO TEST PERFORME	D AS PER ASTM D4767				
	Test Date: 12/2/11 Sample Type: 3" ST				

Project: COLETO CREEK FACILITY Boring No.: B-4-1 S-13 Sample No.: S-13 Test No.: 10.4 PSI

Location: IPR-GDF SUEZ Tested By: BCM Test Date: 12/2/11 Sample Type: 3" ST

Project No.: 60225561 Checked By: WPQ Depth: 24.0'-26.0' Elevation: ----

Soil Description: CLAYEY F-C SAND LITTLE SILT - BROWNISH GRAY SC Remarks: FAILURE CRITERIA = MAXIMUM EFFECTIVE STRESS RATIO TEST PERFORMED AS PER ASTM D4767

Specimen Height: 6.06 in Specimen Area: 5.82 in^2 Specimen Volume: 35.25 in^3

Piston Area: 0.00 in^2 Piston Friction: 0.00 lb Piston Weight: 0.00 lb

Filter Strip Correction: 0.00 tsf Membrane Correction: 0.00 lb/in Correction Type: Uniform ravity: 2.66

iquid Limit: 40		рΊ	astic Limit:	24		Measured	Specific Gra
Time min	Vertical Strain %	Corrected Area in^2	Deviator Load 1b	Deviator Stress tsf	Pore Pressure tsf	Horizontal Stress tsf	Vertical Stress tsf
min 1	% 0.017083 0.037013 0.056944 0.075451 0.093957 0.11389 0.13239 0.1509 0.17083 0.19076 0.21069 0.2292 0.26764 0.3075 0.34593 0.34593 0.34593 0.42281 0.46124 0.50111 0.54097 0.61784 0.65628 0.69471 0.77457 0.77159 0.81145 0.84846 0.8869 1.0406 1.156 1.2713 1.3866 1.5005 1.6172 1.7325 1.8492 1.966 2.0841 2.2009 2.3176 2.4358 2.5539 2.6721 2.7902 2.3176 2.4358 2.5539 2.6721 2.7902 2.3176 3.2515 3.3654 3.4807 3.5946 3.7085 3.7085						
74 1560 75 1590 76 1620 77 1650 78 1680 79 1710	6.0275 6.1428 6.2581 6.372 6.4887 6.6041	6.1927 6.2003 6.2079 6.2155 6.2233 6.2309	104.35 105.29 106.35 107.24 107.98 108.87	1.2132 1.2227 1.2334 1.2423 1.2493 1.2581	5.2524 5.2477 5.2413 5.2355 5.2302 5.2238	5.7888 5.7888 5.7888 5.7888 5.7888 5.7888	7.002 7.0115 7.0222 7.0311 7.0381 7.0469

80	1740	6.7236	6.2389	109.93	1.2686	5.2185	5.7888	7.0574
81 82	1770 1800	6.8418 6.9585	6.2468 6.2547	110.98 111.82	1.2791 1.2872	5.2127 5.2057	5.7888 5.7888	7.0679 7.076
83	1830	7.0767	6.2626	112.56	1.2941	5.1998	5.7888	7.0829
84 85	1860 1890	7.1948 7.3144	6.2706 6.2787	113.45 114.24	1.3027 1.3101	5.1951 5.1887	5.7888 5.7888	7.0915 7.0989
86	1920	7.4326	6.2867	114.98	1.3168	5.184	5.7888	7.1056
87 88	1950 1980	7.5493 7.6646	6.2946 6.3025	115.82 116.61	1.3248 1.3322	5.1776 5.1723	5.7888 5.7888	7.1136 7.121
89	2010	7.7814	6.3105	117.24	1.3377	5.1665	5.7888	7.1265
90 91	2040 2070	7.8953 8.0077	6.3183 6.326	118.03 118.72	1.3451 1.3512	5.1612 5.1548	5.7888 5.7888	7.1339 7.14
92	2100 2130	8.1216 8.2369	6.3339 6.3418	119.56 120.35	1.3591 1.3664	5.1501 5.1443	5.7888 5.7888	7.1479 7.1552
93 94	2160	8.3522	6.3498	121.09	1.373	5.139	5.7888	7.1618
95 96	2190 2220	8 4647 8 58	6.3576 6.3656	121.77 122.56	1.3791 1.3863	5.1326	5.7888 5.7888	7.1679 7.1751
97	2250	8.6939	6.3735	123.14	1.3911	5.1279 5.1238	5.7888	7.1799
98 99	2280 2310	8.8092 8.9259	6.3816 6.3898	124.14 124.77	1.4006 1.4059	5.1185 5.1127	5.7888 5.7888	7.1894 7.1947
100	2340	9.0441	6.3981	125.3	1.41	5.1074	5.7888	7.1988
101 102	2370 2400	9.1608 9.279	6.4063 6.4147	126.04 126.67	1.4165 1.4218	5.1022 5.0981	5.7888 5.7888	7.2053 7.2106
103	2430	9.3957	6.4229	127.25	1.4264	5.0922	5.7888	7,2152
104 105	2460 2490	9.5139 9.632	6.4313 6.4397	127.83 128.41	1.4311 1.4357	5.0881 5.0829	5.7888 5.7888	7.2199 7.2245
106	2520	9.7516	6.4482	129.25	1.4432	5.0782	5.7888	7.232
107 108	2550 2580	9.8698 9.9837	6.4567 6.4649	129.88 130.35	1.4483 1.4518	5.0735 5.0688	5.7888 5.7888	7.2371 7.2406
109	2610	10.102	6.4734	131.04	1.4575	5.0648	5.7888	7.2463
$\begin{array}{c} 110 \\ 111 \end{array}$	2640 2670	10.219 10.332	6 4818 6 49	131.46 132.09	1.4603 1.4654	5.0601 5.056	5.7888 5.7888	7.2491 7.2542
112	2700	10.448	6.4984	132.72	1.4705	5.0525	5.7888	7.2593
113 114	2730 2760	10.562 10.677	6.5066 6.515	133 46 134 2	1.4768 1.4831	5.046 5.0414	5.7888 5.7888	7.2656 7.2719
115	2790	10.792	6.5235	134.46	1.484	5.0373	5.7888	7.2728
116 117	2820 2850	10.909 11.024	6.532 6.5405	134.88 135.41	1.4867 1.4906	5.0338 5.0297	5.7888 5.7888	7.2755 7.2794
118	2880	11.14	6.549	135.99	1.4951	5.0268	5.7888	7.2839
119 120	2910 2940	11.256 11.373	6.5576 6.5662	136.67 137.2	1.5006 1.5044	5.0209 5.0162	5.7888 5.7888	7.2894 7.2932
121	2970	11.491	6.575	137.88	1.5099	5.0127	5.7888	7.2987
122 123	3000 3030	$11.609 \\ 11.73$	6.5838 6.5928	138.25 138.83	1.5119 1.5162	5.0098 5.0063	5.7888 5.7888	7.3007 7.305
124	3060	11.847	6.6015	139.57	1.5222	5.0016	5.7888	7.311
125 126	3090 3120	11.965 12.083	6.6104 6.6193	139.94 140.51	1.5242 1.5284	4.9981 4.9934	5.7888 5.7888	7.313 7.3172
127	3150	12.2	6.6281	141.15	1.5333	4.9911	5.7888	7.3221
128 129	3180 3210	12.317 12.432	6.6369 6.6456	141.62 141.94	1.5364 1.5378	4.9841 4.9829	5.7888 5.7888	7.3252 7.3266
130	3240	12.55 12.666	6.6546	142.67 143.52	1.5437	4.98	5.7888 5.7888	7.3325
131 132	3270 3300	12.78	6.6634 6.6721	144.09	1.5507 1.555	4.9759 4.9724	5.7888	7.3395 7.3438
133 134	3330 3360	12.893 13.009	6.6808 6.6897	144.57 144.99	1.558 1.5605	4.9689 4.966	5.7888 5.7888	7.3468 7.3493
135	3390	13.124 13.238	6.6986	145.36 145.83	1.5624	4.9624	5.7888	7.3512
136 137	3420 3450	13.238 13.355	6.7074 6.7164	145.83 146.2	1.5654 1.5673	4.9595 4.9554	5 7888 5 7888	7.3542 7.3561
138	3480	13.471	6.7255	146.89	1.5725	4.9519	5.7888	7.3613
139 140	3510 3540	13.588 13.706	6.7345 6.7438	147.46 147.78	1.5766 1.5778	4.9496 4.9455	5.7888 5.7888	7.3654 7.3666
141	3570	13.823	6.7529	148.1	1.579	4.942	5.7888	7.3678
142 143	3600 3630	13.938 14.058	6.7619 6.7714	148.68 149.41	1.5831 1.5887	4.9385 4.9355	5.7888 5.7888	7.3719 7.3775
144	3660	14.175	6.7806	149.89	1.5916	4.9338	5.7888	7.3804
145 146	3690 3720	14.291 14.411	6.7898 6.7993	150.25 150.25	1.5933 1.5911	4.9303 4.9279	5.7888 5.7888	7.3821 7.3799
147	3750	14.529	6.8087	150.52	1.5917	4.9256	5.7888	7.3805
148 149	3780 3810	14.645 14.76	6.8179 6.8271	151.31 152.36	1.5979 1.6068	4.9227 4.9192	5.7888 5.7888	7.3867 7.3956
150	3840	14.875	6.8364	152.73	1.6085	4.9168	5.7888	7.3973
151 152	3870 3900	14.99 15.104	6.8456 6.8548	153.04 153.57	$1.6097 \\ 1.613$	4.9133 4.911	5.7888 5.7888	7.3985 7.4018
153	3930	15.218	6.864	153.94	1.6147	4 9092	5.7888	7.4035

Project: COLETO CREEK FACILITY Boring No.: B-4-1 S-13 Sample No.: S-13 Test No.: 10.4 PSI

Location: IPR-GDF SUEZ Tested By: BCM
Test Date: 12/2/11
Sample Type: 3" ST

Project No.: 60225561 Checked By: WPQ Depth: 24.0'-26.0' Elevation: ----

Soil Description: CLAYEY F-C SAND LITTLE SILT - BROWNISH GRAY SC Remarks: FAILURE CRITERIA = MAXIMUM EFFECTIVE STRESS RATIO TEST PERFORMED AS PER ASTM D4767

Filter Strip Correction: 0.00 tsf Membrane Correction: 0.00 lb/in Correction Type: Uniform Specimen Height: 6.06 in Specimen Area: 5.82 in^2 Specimen Volume: 35.25 in^3 Piston Area: 0.00 in^2 Piston Friction: 0.00 lb Piston Weight: 0.00 lb

Liquid Limit: 40 Plastic Limit: 24 Measured Specific Gravity: 2.66

Liquia Limit:	+0	P	lastic Limit	. 24		measured	specific G	ravity: 2.66	
Vert St	Tota ical Vertica rain Stres % ts	l Horizontal s Stress	Excess Pore Pressure tsf	A Parameter	Effective Vertical Stress tsf	Effective Horizontal Stress tsf	Stress Ratio	Effective p tsf	q tsf
2 3 4 5 6 7 8 9 10 11 12 3 14 5 16 7 18 9 20 1 22 22 3 24 5 27 28 9 30 1 22 3 24 5 27 28 9 30 1 23 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	% CS 0.00 5.788 0.002 5.874 0.004 5.929 0.006 5.967 0.009 6.021 0.11 6.041 0.15 6.059 0.17 6.090 0.19 6.103 0.21 6.115 0.23 6.12 0.27 6.1 0.35 6.245 0.24 6.218 0.25 6.245 0.56 6.245 0.58 6.291 0.58 6.204 0.58 6.204 0.58 6.208 0.66 6.291 0.77 6.320 0.77 6.320 0.77 6.320 0.77 6.320 0.77 6.320 0.77 6.320 0.77 6.320 0.77 6.320 0.77 6.320 0.77 6.320 0.77 6.320 0.77 6.320 0.77 6.320 0.77 6.320 0.77 6.320 0.77 6.320 0.77 6.320 0.77 6.320 0.77 6.320 0.81 6.328 0.85 6.348 0.85 6.348 0.85 6.348 0.85 6.368 0.89 6.383 1.16 6.406 1.27 6.544 0.56 6.614 0.57 6.563 0.89 6.593 0.89 6.704 0.81 6.704 0.82 6.704 0.83 6.704 0.85 6.704 0.85 6.704 0.86 6.704 0.87 6.87 6.87 0.89 6.994 0.89 6.994 0.90 6.904 0	81	0.19936 0.23853 0.26543 0.28472 0.29992 0.31278 0.32331 0.332381 0.34669 0.35254 0.357476 0.36716 0.37476 0.38586 0.39113 0.39463 0.39143 0.40516 0.40691 0.40691 0.40691 0.40691 0.40808 0.41159 0.41276 0.41393 0.4151 0.41393 0.4151 0.4151 0.4151 0.41393 0.4151 0.4151 0.41393 0.4151 0.4151 0.41393 0.4151 0.39054 0.39814 0.39816	0.000 2.337 1.696 1.483 1.363 1.291 1.236 1.195 1.128 1.002 1.078 1.075 1.017 0.983 0.955 0.929 0.910 0.889 0.871 0.824 0.809 0.775 0.764 0.775 0.764 0.775 0.764 0.754 0.754 0.754 0.754 0.764 0.755 0.756	0.74626 0.63221 0.64837 0.65986 0.65986 0.67866 0.767866 0.70772 0.71423 0.72769 0.72769 0.75268 0.76421 0.77566 0.85517 0.885197 0.885197 0.885197 0.88596 0.87363 0.84214 0.855197 1.0172 1.0393 1.0604 1.0172 1.0393 1.1041 1.11475 1.16892 1.2712 1.2729 1.3104 1.3303 1.4459 1.4459 1.4751 1.4631 1.4751 1.4632 1.4771 1.4754 1.51309 1.5678 1.5678 1.5678 1.5678 1.5696 1.7045	0.74626 0.5469 0.5469 0.5469 0.48083 0.46154 0.44348 0.42295 0.41418 0.39957 0.39957 0.37911 0.36566 0.37911 0.355163 0.34812 0.34812 0.34344 0.335514 0.335584 0.33233 0.335572 0.3604 0.4068 0.4068 0.442649 0.442637 0.442649 0.44283 0.44283 0.447616 0.447616 0.447616 0.447616 0.447616 0.447616 0.447616 0.447616 0.447616 0.447616 0.45277 0.45803 0.50071 0.50071 0.50071 0.50071 0.50071 0.50071 0.50071 0.50071 0.50071 0.51884 0.52293 0.52877 0.52877 0.52877 0.54105	1.000 1.156 1.277 1.372 1.520 1.584 1.6694 1.743 1.787 1.8373 1.953 2.026 2.111 2.442 2.5559 2.6684 2.797 2.6684 2.798 2.929 2.929 2.930 3.073 3.172 2.940 2.988 3.1372 3.324 3.324 3.3345 3.3344 3.3346 3.3344 3.3346 3.3346 3.3346 3.3346 3.3346 3.3347 3.3366 3.3366 3.3366 3.337 3.3366 3.337 3.3366	0.74626 0.58956 0.57805 0.57035 0.57035 0.56601 0.5625 0.56602 0.555826 0.55792 0.55686 0.5569 0.5572 0.55808 0.55879 0.56209 0.56494 0.56803 0.57015 0.57369 0.57658 0.58004 0.58709 0.59075 0.59471 0.60632 0.60682 0.606357 0.60682 0.606357 0.60682 0.6122 0.62864 0.64021 0.65291 0.666398 0.67653 0.666398 0.67653 0.73967 0.72615 0.73967 0.75163 0.77842 0.70136 0.77377 0.772615 0.77842 0.79031 0.80299 0.81596 0.82893 0.84128 0.77842 0.77842 0.79031 0.80299 0.81596 0.82893 0.84128 0.93941 0.95008 0.99097 0.91473 0.92638 0.93941 0.996124 0.9943 1.0656 1.0778 1.0877 1.0191 1.0304 1.0429 1.0543 1.0656 1.0778 1.0877 1.1117 1.12 1.1318 1.1524	0 0.042657 0.070321 0.089512 0.10447 0.11616 0.12655 0.1353 0.14373 0.15086 0.15733 0.16362 0.1806 0.19059 0.19928 0.20763 0.21501 0.22206 0.22846 0.23495 0.25139 0.25687 0.26187 0.26565 0.27006 0.27448 0.27986 0.27488 0.27986 0.27986 0.339094 0.35054 0.339094 0.35054 0.35909 0.3687 0.37803 0.34069 0.37803 0.34069 0.35909 0.3687 0.37803 0.38746 0.39591 0.40403 0.41276 0.42114 0.42114 0.42856 0.43627 0.45165 0.47938 0.47938 0.47938 0.47938 0.47938 0.47938 0.47938 0.47938 0.47938 0.47938 0.47938 0.47938 0.47938 0.47938 0.47938 0.47938 0.47938 0.55476 0.55477 0.55477 0.55477 0.558247 0.558277 0.558277 0.558277 0.558277 0.558277 0.558277 0.558277 0.558277 0.558277 0.558277 0.558277 0.558277 0.5582877 0.558277 0.558277 0.558277 0.558277 0.558277 0.558277 0.5582850 0.577135 0.577135 0.577135 0.577135 0.577135 0.577135 0.577135 0.577135 0.577135 0.577135 0.577135 0.577135 0.577135 0.577135 0.577135
76 77	6.26 7.022 6.37 7.031 6.49 7.038	2 5.7888 1 5.7888	0.19878 0.19293 0.18767	0.161 0.155 0.150	1.7809 1.7956 1.8079	0.54748 0.55333 0.55859	3.253 3.245 3.236	1.1642 1.1745 1.1832	0.61671 0.62114 0.62463

79 801 82 838 845 868 878 899 91 900 101 1023 1045 1067 1078 1089 1101 1113 1145 1177 1188 1190 1111 1121 1121 1131 1145 1156 1178 1189 1189 1189 1189 1189 1189 1189
6.60 6.72 6.84 6.96 7.08 7.19 7.343 7.55 7.66 7.78 8.12 8.245 8.85 8.89 9.16 9.240 9.51 9.63 9.75 9.98 10.10 10.22 10.33 10.68 10.79 11.61 11.73 11.87 12.82 12.78 12.78 13.71
7.0469 7.0574 7.0574 7.0574 7.0829 7.0915 7.1056 7.1136 7.121 7.12659 7.1479 7.1551 7.1618 7.1679 7.1751 7.1799 7.1894 7.1945 7.2199 7.2199 7.2245 7.2199 7.2245 7.22463 7.2463 7.2463 7.2593 7.2593 7.2719 7.2755 7.2794 7.2839 7.2839 7.2839 7.2987 7.3325 7
5.7888 5.7888
0.18124 0.17598 0.17598 0.17593 0.16312 0.15727 0.15259 0.14616 0.14148 0.13505 0.12979 0.112868 0.11225 0.10757 0.101757 0.964466 0.090035 0.085358 0.081265 0.076003 0.076003 0.076057 0.049695 0.045602 0.059634 0.0052618 -0.0052618 -0.0026309 -0.029817 -0.036649 -0.059634 -0.059634 -0.059634 -0.065557 -0.066649 -0.070556 -0.070556 -0.070556 -0.070556 -0.10407 -0.10699 -0.110407 -0.110407 -0.110407 -0.110407 -0.110407 -0.110407 -0.11257 -0.11257 -0.11257 -0.11257 -0.11257 -0.11257 -0.113154 -0.1333
0.144 0.139 0.133 0.127 0.122 0.117 0.112 0.107 0.102 0.097 0.093 0.088 0.083 0.079 0.074 0.070 0.065 0.062 0.058 0.050 0.046 0.042 0.039 0.035 0.032 0.028 0.025 0.021 0.018 0.015 0.015 0.015 0.015 0.015 0.017 0.002 -0.001 -0.004 -0.009 -0.011 -0.014 -0.017 -0.020 -0.022 -0.024 -0.022 -0.024 -0.027 -0.029 -0.032 -0.034 -0.038 -0.043 -0.043 -0.043 -0.043 -0.043 -0.044 -0.051 -0.053 -0.058 -0.059 -0.066 -0.067 -0.068 -0.077 -0.068 -0.077 -0.068 -0.077 -0.078 -0.078 -0.077 -0.078 -0.080 -0.082 -0.083
1.8231 1.8389 1.85704 1.88704 1.88704 1.8961 1.99216 1.99216 1.9936 1.99487 1.9961 2.0022 2.00372 2.00472 2.00372 2.0709 2.0709 2.0914 2.1123 2.11416 2.11536 2.1717 2.1815 2.1982 2.21969 2.22305 2.22497 2.22585 2.22497 2.22586 2.22909 2.23056 2.2497 2.2586 2.29097 2.33149 2.33536 2.33149 2.33536 2.33149 2.33536 2.33149 2.33536 2.33149 2.33536 2.3418 2.3425 2.3426 2.34
0.56502 0.57028 0.577028 0.577028 0.577028 0.57613 0.58315 0.58899 0.59367 0.6001 0.60478 0.61121 0.61647 0.62232 0.63232 0.63401 0.63869 0.64453 0.6609 0.665623 0.6609 0.665623 0.6609 0.665623 0.6609 0.665623 0.6609 0.70592 0.71066 0.70592 0.71528 0.77092 0.71528 0.77257 0.77404 0.72872 0.73632 0.74275 0.774743 0.75152 0.75503 0.75912 0.76205 0.76789 0.77257 0.77608 0.775912 0.76205 0.76789 0.775912 0.76205 0.76789 0.775912 0.76205 0.76789 0.775912 0.76205 0.76789 0.775912 0.76205 0.77608 0.7779 0.78251 0.78791 0.80473 0.80589 0.81993 0.8285 0.82636 0.82928 0.83337 0.79069 0.79537 0.790771 0.80473 0.80589 0.80882 0.81291 0.81642 0.81993 0.8285 0.82636 0.82928 0.83337 0.85851 0.86611 0.86662 0.87796
3.227 3.225 3.227 3.197 3.197 3.198 3.177 3.168 3.153 3.128 3.128 3.128 3.102 3.090 3.090 3.069 3.063 3.004 2.984 2.922 2.946 2.941 2.946 2.941 2.946 2.941 2.941 2.941 2.941 2.941 2.941 2.942 2.941 2.941 2.941 2.942 2.941 2.941 2.942 2.941 2.941 2.942 2.941 2.941 2.942 2.941 2.942 2.941 2.942 2.941 2.942 2.941 2.942 2.941 2.942 2.941 2.942 2.941 2.942 2.941 2.942 2.941 2.942 2.945 2.941 2.946 2.941 2.941 2.941 2.941 2.941 2.941 2.941 2.942 2.941 2.941 2.942 2.941 2.941 2.942 2.942 2.942 2.942 2.942 2.942 2.941 2.942 2.942 2.942 2.942 2.942 2.942 2.942 2.942 2.944 2.945 2.945 2.945 2.945 2.945 2.946 2.946 2.946 2.946 2.946 2.946 2.946 2.946 2.946 2.946 2.946 2.946 2.946 2.946 2.946 2.946 2.845
1.2046 1.2046 1.2046 1.22636 1.2245 1.22636 1.226336 1.226336 1.226336 1.23096 1.330982 1.333454 1.333454 1.33791 1.33791 1.34084 1.4408 1.4408 1.4408 1.4408 1.4408 1.4508 1.4508 1.5608 1.5608 1.5608 1.5608 1.660
0.62903 0.634361 0.64703 0.64703 0.651354 0.655842 0.665842 0.665842 0.667956 0.668253 0.679561 0.688351 0.688351 0.69314 0.69314 0.70297 0.70502 0.70826 0.71353 0.711783 0.721588 0.721588 0.72588 0.72416 0.72588 0.72588 0.72595 0.75595 0.75595 0.75595 0.76663 0.775495 0.76663 0.775495 0.775495 0.775495 0.775495 0.76818 0.77538 0.77538 0.77538 0.77538 0.77538 0.77538 0.77538 0.77538 0.77538 0.77538 0.77538 0.77538 0.77538 0.77538 0.775595 0.75801 0.76663 0.7768183 0.77536 0.775595 0.775595 0.775595 0.775595 0.775595 0.775595 0.775595 0.775595 0.775595 0.775595 0.775595 0.775595 0.775595 0.775595 0.775595 0.775595 0.775595 0.775595

Project: COLETO CREEK FACILITY Boring No.: B-4-1 S-13 Sample No.: S-13 Test No.: 17.4 PSI

Location: IPR-GDF SUEZ Tested By: BCM Test Date: 12/2/11 Sample Type: 3 " ST

Project No.: 60225561 Checked By: WPQ Depth: 24.0'-26.0' Elevation: ----

Soil Description: CLAYEY F-C SAND LITTLE SILT - BROWNISH GRAY SC Remarks: FAILURE CRITERIA = MAXIMUM EFFECTIVE STRESS RATIO TEST PERFORMED AS PER ASTM D4767

Piston Area: 0.00 in^2 Piston Friction: 0.00 lb Piston Weight: 0.00 lb Specimen Height: 5.41 in Specimen Area: 6.29 in^2 Specimen Volume: 34.03 in^3

ravity: 2.66

Filter Strip Correction: 0.00 tsf Membrane Correction: 0.00 lb/in Correction Type: Uniform

Liquid Limit: 40		РΊ	astic Limit:	24		Measured	Specific Gra
Time min	Vertical Strain %	Corrected Area in^2	Deviator Load 1b	Deviator Stress tsf	Pore Pressure tsf	Horizontal Stress tsf	Vertical Stress tsf
74 1530 75 1560 76 1590 77 1620 78 1650 79 1680	6.6239 6.7531 6.884 7.0132 7.1407 7.2682	6.736 6.7453 6.7548 6.7642 6.7735 6.7828	140.02 140.15 140.9 141.24 143.21 142.94	1.4966 1.496 1.5018 1.5034 1.5223 1.5173	5.6774 5.6735 5.6696 5.6669 5.6647 5.6624	6.2928 6.2928 6.2928 6.2928 6.2928 6.2928	7.7894 7.7888 7.7946 7.7962 7.8151 7.8101

80 81 82 83 84 85 86 87 88 89	1710 1740 1770 1800 1830 1860 1890 1920 1950 1980 2010	7.3991 7.5299 7.6641 7.7984 7.9292 8.0618 8.1927 8.3235 8.4527 8.5836 8.7128	6.7924 6.802 6.8119 6.8218 6.8315 6.8414 6.8511 6.8609 6.8706 6.8804 6.8901	144.57 144.91 145.45 144.97 146.13 147.01 146.81 148.1 149.8 149.8	1.5324 1.5339 1.5374 1.5301 1.5401 1.5472 1.5428 1.5542 1.5698 1.5633 1.5753	5.6597 5.6585 5.6563 5.6547 5.6524 5.6497 5.6463 5.6441 5.6408 5.6358	6.2928 6.2928 6.2928 6.2928 6.2928 6.2928 6.2928 6.2928 6.2928 6.2928	7.8252 7.8267 7.8302 7.8229 7.8329 7.84 7.8356 7.847 7.8626 7.8561 7.8681
91 92 93 94 95 96 97 98 99	2040 2070 2100 2130 2160 2190 2220 2250 2280	8.842 8.9695 9.0987 9.2295 9.3604 9.4913 9.6238 9.7547 9.8872	6.8999 6.9096 6.9194 6.9294 6.9394 6.9494 6.9597 6.9697	150.48 150.82 151.63 153.33 154.76 156.66 156.32 155.71	1.5702 1.5716 1.5778 1.5932 1.6057 1.6231 1.6172 1.6085 1.6041	5.6319 5.6291 5.6263 5.6241 5.6213 5.6191 5.6169 5.6152 5.6119	6.2928 6.2928 6.2928 6.2928 6.2928 6.2928 6.2928 6.2928 6.2928	7.863 7.8644 7.8706 7.886 7.8985 7.9159 7.91 7.9013 7.8969
100 101 102 103 104 105 106 107 108 109	2310 2340 2370 2400 2430 2460 2490 2550 2550 2580	10.02 10.151 10.285 10.417 10.548 10.681 10.81 11.07 11.07	6.9902 7.0004 7.0109 7.0213 7.0315 7.042 7.0522 7.0622 7.0728 7.0728	155.3 155.71 156.18 157.2 157.75 157.75 158.22 158.97 159.78 160.26	1.5996 1.6015 1.604 1.612 1.6153 1.6129 1.6154 1.6207 1.6266 1.6291	5.6097 5.6069 5.6041 5.6008 5.598 5.5963 5.5925 5.5886 5.5858	6.2928 6.2928 6.2928 6.2928 6.2928 6.2928 6.2928 6.2928 6.2928	7.8924 7.8943 7.8968 7.9048 7.9081 7.9057 7.9082 7.9135 7.9194 7.9219
110 111 112 113 114 115 116 117 118	2610 2640 2670 2700 2730 2760 2790 2820 2850	11.328 11.459 11.59 11.718 11.852 11.983 12.112 12.243 12.375	7.0934 7.1039 7.1144 7.1247 7.1355 7.1461 7.1566 7.1673 7.1781	161.14 159.85 160.6 164.95 159.92 158.56 159.78 159.85	1.6356 1.6202 1.6253 1.6669 1.6137 1.5976 1.6075 1.6065 1.6034	5.5797 5.578 5.5752 5.5703 5.5669 5.5647 5.5619 5.5603	6.2928 6.2928 6.2928 6.2928 6.2928 6.2928 6.2928 6.2928 6.2928	7.9284 7.913 7.9181 7.9597 7.9065 7.8904 7.9003 7.8993 7.8962
119 120 121 122 123 124 125 126 127 128	2880 2910 2940 2970 3000 3030 3060 3090 3120 3150	12.506 12.639 12.771 12.904 13.035 13.169 13.298 13.427 13.56 13.689	7.1889 7.1998 7.2107 7.2217 7.2326 7.2438 7.2545 7.2654 7.2765 7.2874	160.26 160.06 160.19 160.33 160.74 160.87 160.87 161.62	1.6051 1.6006 1.6016 1.5971 1.5961 1.5976 1.5942 1.5992 1.6049	5.558 5.5541 5.5527 5.5497 5.5475 5.5458 5.5442 5.5443 5.5403 5.5397	6.2928 6.2928 6.2928 6.2928 6.2928 6.2928 6.2928 6.2928 6.2928 6.2928	7.8979 7.8934 7.8944 7.8899 7.8889 7.8904 7.8894 7.887 7.892 7.8977
129 130 131 132 133 134 135 136 137	3180 3210 3240 3270 3300 3330 3360 3390 3420 3450	13.818 13.947 14.078 14.208 14.338 14.468 14.598 14.731 14.864 14.994	7.2983 7.3093 7.3204 7.3314 7.3426 7.3537 7.365 7.3765 7.3765 7.3879 7.3893	162.98 162.84 163.39 163.93 165.02 164.4 165.02 165.15 165.49	1.6078 1.6041 1.6097 1.6181 1.6097 1.6132 1.612 1.6128	5.538 5.5369 5.5353 5.5342 5.5319 5.5314 5.5303 5.5292 5.5275	6.2928 6.2928 6.2928 6.2928 6.2928 6.2928 6.2928 6.2928 6.2928 6.2928	7.9006 7.8969 7.8998 7.9027 7.9109 7.9025 7.906 7.9048 7.9056 7.9038
139 140 141 142 143 144 145 146 147	3480 3510 3540 3570 3600 3630 3660 3690 3695.9	15.127 15.261 15.394 15.525 15.655 15.788 15.916 16.048	7.4109 7.4226 7.4342 7.4457 7.4573 7.469 7.4804 7.4922 7.4944	165.42 165.9 166.31 167.12 166.99 167.19 167.6 168.55 168.96	1.6072 1.6092 1.6107 1.6161 1.6122 1.6117 1.6132 1.6198 1.6232	5.5258 5.5242 5.523 5.5219 5.5197 5.5181 5.5169 5.5153 5.5158	6.2928 6.2928 6.2928 6.2928 6.2928 6.2928 6.2928 6.2928 6.2928	7.9 7.902 7.9035 7.9089 7.905 7.9045 7.9126 7.9126

Project: COLETO CREEK FACILITY Boring No.: B-4-1 S-13 Sample No.: S-13 Test No.: 17.4 PSI

Location: IPR-GDF SUEZ Tested By: BCM
Test Date: 12/2/11
Sample Type: 3 " ST

Project No.: 60225561 Checked By: WPQ Depth: 24.0'-26.0' Elevation: ----

Soil Description: CLAYEY F-C SAND LITTLE SILT - BROWNISH GRAY SC Remarks: FAILURE CRITERIA = MAXIMUM EFFECTIVE STRESS RATIO TEST PERFORMED AS PER ASTM D4767

Filter Strip Correction: 0.00 tsf Membrane Correction: 0.00 lb/in Correction Type: Uniform Specimen Height: 5.41 in Specimen Area: 6.29 in^2 Specimen Volume: 34.03 in^3 Piston Area: 0.00 in^2 Piston Friction: 0.00 lb Piston Weight: 0.00 lb

Specimen vorume: 5410	5 111 5		Scon wergine	. 5100 15		20112011	on Type: on		
Liquid Limit: 40		PΊ	astic Limit	: 24		Measured	Specific G	ravity: 2.66	
Vertical Strain %	Total Vertical Stress tsf	Total Horizontal Stress tsf	Excess Pore Pressure tsf	A Parameter	Effective Vertical Stress tsf	Effective Horizontal Stress tsf	Stress Ratio	Effective p tsf	q tsf
1 0.00 2 0.02 3 0.04 4 0.06 5 0.08 6 0.10 7 0.12 8 0.14 9 0.16 10 0.19 11 0.23 13 0.25 14 0.30 15 0.34 16 0.38 17 0.42 18 0.46 19 0.55 21 0.64 22 0.64 23 0.68 24 0.77 26 0.81 27 0.86 29 0.94 30 0.98 31 1.15 20 2.25 21 0.64 22 0.64 23 0.68 24 0.77 26 0.81 27 26 0.81 29 0.94 30 0.98 31 1.15 33 1.42 35 1.67 37 1.81 39 2.07 40 2.20 41 2.33 44 2.72 45 2.85 47 4.15 50 3.63 51 3.63 52 3.76 53 3.63 55 4.55 56 4.28 57 4.41 48 49 3.37 50 3.63 51 3.63 52 5.15 53 3.89 54 4.05 55 5.85 66 67 5.72 66 68 5.97 70 6.11 71 6.24 72 6.49 73 6.67 75 76 76 77 77 77 77 77 77 77 77 77 77 77 77 77	6.2928 6.4343 6.51835 6.65835 6.67268 6.67268 6.67268 6.67268 6.67268 6.67369 6.68837 6.72169 6.68837 6.77216 6.68404 6.77216 6.88837 6.7919 6.7919 6.7919 6.7919 6.7919 6.7919 6.7919 7.1019 7	6.2928 6.2928	0 0.071079 0.11883 0.1566 0.18658 0.212688 0.22767 0.25488 0.22671 0.21657 0.26988 0.266559 0.33707 0.33929 0.33152 0.30597 0.38427 0.36872 0.36872 0.36872 0.36872 0.36872 0.42036 0.44646 0.41537 0.44646 0.41537 0.49478 0.575641	0.000 0.502 0.527 0.539 0.548 0.6590 0.600 0.6887 0.627 0.6888 0.7741 0.676 0.707 0.773 0.9742 0.771 0.993 0.6989 0.677 0.731 1.033 0.6993 0.679 0.679 0.679 0.6592 0.6652 0.6644 0.629 0.6591 0.5587 0.587 0.587 0.587 0.587 0.588 0.549 0.548 0.549 0.548 0.549 0.548 0.549 0.548 0.549 0.548 0.549 0.548 0.549 0.548 0.549 0.548 0.549 0.548 0.549 0.549 0.551 0.548 0.549 0.548 0.549 0.549 0.551 0.548 0.549 0.447 0.446 0.447 0.447 0.446 0.447 0.447 0.446 0.447 0.447 0.447 0.447 0.447 0.446 0.447	1.2529 1.3233 1.3595 1.3869 1.4066 1.4252 1.4068 1.4351 1.3755 1.3306 1.2799 1.3755 1.3306 1.2689 1.4141 1.3627 1.3552 1.4461 1.3627 1.3552 1.4461 1.3627 1.4594 1.4376 1.4376 1.5681 1.4672 1.4376 1.5681 1.5682 1.702 1.7137 1.7278 1.77437 1.7565 1.7806 1.8154 1.8288 1.8455 1.8673 1.8748 1.88748 1.88748 1.88748 1.88748 1.88748 1.8987 1.9987	1.2529 1.1818 1.134 1.0963 1.0663 1.0402 1.0696 1.0224 0.99798 1.0252 0.98576 1.0363 0.98299 0.98632 0.99687 0.91357 0.92135 0.94689 0.86859 0.88414 0.91913 0.841884 0.8325 0.8897 0.8064 0.81584 0.8325 0.8897 0.80641 0.8375 0.75809 0.775809 0.775809 0.775809 0.775809 0.775809 0.775809 0.775809 0.775921 0.76753 0.69645 0.67757 0.66313 0.69645 0.67757 0.575809 0.57317 0.575873 0.57562 0.577151 0.57706 0.57317 0.57206 0.57317 0.57206 0.57317 0.57539 0.57539 0.57539 0.575317 0.57539 0.57539 0.57539 0.575317 0.57539 0.57539 0.575317 0.57539 0.57539 0.575317 0.57539 0.57539 0.575317 0.57539 0.57539 0.575317 0.57539 0.575317 0.57539 0.575317 0.57539	1.000 1.1299 1.2659 1.3768 1.3768 1.3768 1.3768 1.3768 1.37699 1.3768 1.3899 1.37662 1.3899 1.37662 1.3899 1.37662 1.3899 1.3898 1.3899 1.3898	1.2529 1.2525 1.2468 1.2416 1.2325 1.2328 1.2024 1.2146 1.215 1.1888 1.1581 1.1792 1.1581 1.1792 1.1586 1.1358 1.10653 1.1536 1.1358 1.10759 1.1234 1.0872 1.1384 1.1198 1.0655 1.1229 1.0759 1.1229 1.0759 1.1127 1.11384 1.1138 1.1156 1.118 1.1156 1.118 1.1177 1.0658 1.11654 1.1188 1.11594 1.11994 1.1914 1.1939 1.2247 1.2577 1.2241 1.2335 1.2409 1.2485 1.25657 1.274 1.2806 1.2877 1.2947 1.3014 1.3093 1.3187 1.3394 1.3538 1.36373 1.3776	0.070757 0.11272 0.14534 0.17017 0.19267 0.13282 0.21303 0.12181 0.19626 0.17213 0.13602 0.24947 0.24006 0.21441 0.15706 0.27378 0.23926 0.16806 0.295343 0.24396 0.32258 0.28734 0.17579 0.3156 0.21955 0.3365 0.23783 0.35436 0.29823 0.40963 0.43624 0.45245 0.46824 0.48895 0.50533 0.51955 0.53554 0.54885 0.55833 0.56814 0.57833 0.56897 0.59672 0.666787 0.61613 0.61978 0.62193 0.63479 0.64176 0.65079 0.75169 0.74061 0.74061 0.74799 0.775099 0.775169

79 80 81 82 83 84 85 86 87 88 89 91 92 93 94 95 96 100 101 102 103 104 105 106 107 108 119 1112 113 114 115 116 117 118 119 120 121 123 124 125 127 128 129 131 134 135 136 137 138 139 140 141 145 146 147
7.27 7.40 7.566 7.80 7.680 7.93 8.09 8.32 8.45 8.581 8.97 9.36 9.62 9.62 9.62 10.42 10.68 10.97 11.33 11.46 11.72 11.85 11.98 12.14 12.38 12.67 13.33 13.56 13.69 13.85 14.60 14.73 14.86 14.73 14.86 14.73 14.86 15.79 15.66 16.07
7.8101 7.8252 7.8252 7.8262 7.8302 7.8329 7.8329 7.8329 7.8329 7.8561 7.8626 7.8561 7.8633 7.8644 7.8706 7.8865 7.9159 7.9139 7.8924 7.9139 7.8924 7.9057 7.9082 7.9139 7.9284 7.9139 7.9284 7.9139 7.9284 7.9139 7.9284 7.9139 7.9284 7.9139 7.9284 7.9139 7.9284 7.9139 7.9284 7.9139 7.9284 7.9139 7.9284 7.9985 7.9065 7.8904 7.8899 7.8897 7.8906 7.8906 7.8906 7.8906 7.9066
6.2928 6.22928 6.2928
0.6225 0.61972 0.61861 0.61639 0.61472 0.6125 0.60972 0.60639 0.60417 0.60084 0.59862 0.59584 0.59195 0.58918 0.58418 0.57696 0.57529 0.57796 0.57529 0.57696 0.57529 0.575808 0.55641 0.55253 0.54864 0.554864 0.554253 0.53309 0.53331 0.52698 0.52476 0.52199 0.52032 0.5181 0.51425 0.51425 0.50331 0.52698 0.52476 0.52199 0.52032 0.5181 0.51425 0.50331 0.52698 0.52476 0.52199 0.52032 0.5181 0.51425 0.49422 0.49311 0.49633 0.49977 0.49870 0.4977 0.49533 0.49977 0.49880 0.54889 0.44970 0.4977 0.49533 0.49977 0.49533 0.49977 0.49880 0.54889 0.44970 0.49780 0.4759
0.410 0.404 0.403 0.401 0.402 0.398 0.398 0.389 0.383 0.377 0.375 0.375 0.3557 0.3557 0.3557 0.3557 0.3557 0.3558 0.3557 0.352 0.352 0.352 0.3538 0.372 0.3557 0.3558 0.3557 0.3558 0.3557 0.3557 0.3558 0.3557 0.3558 0.3557 0.3558 0.3557 0.3558 0.3559 0.362 0.
2.1476 2.1656 2.1681 2.1683 2.1683 2.1805 2.1993 2.2218 2.22175 2.2218 2.22175 2.2232 2.2443 2.2677 2.2968 2.2961 2.2827 2.2827 2.2827 2.2827 2.2827 2.3093 2.3157 2.33394 2.3349 2.3492 2.3355 2.33574 2.3359 2.3359 2.3359 2.3359 2.3359 2.3359 2.3359 2.3359 2.3359 2.3359 2.3359 2.3359 2.33746 2.3359 2.33746 2.33745 2.33745 2.33746 2.33745 2.33745 2.33745 2.33745 2.33745 2.33745 2.33745 2.33745 2.33745 2.33745 2.33745 2.33745 2.33745 2.33745 2.33779 2.3402 2.3402 2.3414 2.35779 2.3685 2.3779 2.38645 2.3779 2.38645 2.3779 2.38664 2.3779 2.38669 2.3745 2.3779 2.38869 2.38740 2.38869 2.38702
0.63037 0.63315 0.63315 0.63315 0.63648 0.63648 0.63814 0.64036 0.64036 0.64647 0.64869 0.65203 0.655203 0.655203 0.656426 0.66699 0.666369 0.666369 0.67546 0.67368 0.67757 0.68809 0.68859 0.68859 0.68859 0.68859 0.68868 0.69201 0.69478 0.70422 0.707 0.71033 0.71311 0.71478 0.771478 0.771478 0.77255 0.72588 0.72255 0.73477 0.7388 0.73255 0.73477 0.73888 0.73255 0.73477 0.73888 0.73255 0.73477 0.73888 0.73255 0.73477 0.736864 0.755753 0.75867 0.76087 0.76087 0.76142 0.76253 0.76697 0.76864 0.775786 0.77586 0.777586 0.777586 0.777586 0.777586 0.777586 0.777587
3.407 3.420 3.418 3.498 3.495 3.406 3.389 3.396 3.396 3.389 3.376 3.389 3.376 3.389 3.376 3.389 3.376 3.389 3.381 3.393 3.393 3.393 3.393 3.393 3.393 3.393 3.393 3.393 3.393 3.393 3.393 3.316 3.393 3.393 3.393 3.393 3.316 3.316 3.311 3.121 3.122 3.131 3.122 3.131 3.122 3.131 3.122 3.131 3.122 3.131 3.122 3.131 3.122 3.131 3.122 3.131 3.122 3.131 3.122 3.131 3.132 3.125 3.131 3.126 3.131 3.127 3.131 3.132 3.126 3.131 3.132 3.127 3.131 3.132 3.131 3.132 3.131 3.132 3.131 3.132 3.131 3.132 3.131 3.132 3.131 3.132 3.132 3.136 3.139 3.138 3.139
1.389 1.3994 1.4012 1.4032 1.4032 1.4104 1.4167 1.4258 1.4369 1.4457 1.4458 1.44495 1.4451 1.4451 1.4852 1.4845 1.4845 1.4845 1.4845 1.4829 1.5029 1.5029 1.5029 1.5029 1.5029 1.5146 1.5521 1.55249 1.55249 1.55249 1.55341 1.55438 1.55458 1.55458 1.55458 1.55458 1.55685 1.55685 1.5579 1.5685 1.57706 1.5733 1.57792 1.5806 1.57733 1.57792 1.58866 1.58866
0.75864 0.76621 0.76621 0.76621 0.76621 0.766868 0.76506 0.77006 0.77306 0.77142 0.7711 0.7849 0.78165 0.78578 0.78578 0.78591 0.80285 0.81154 0.80204 0.80204 0.80325 0.81329 0.81329 0.81453 0.81453 0.81782 0.81329 0.81453 0.81782 0.81038 0.80643 0.80769 0.80769 0.80325 0.80769 0.80325 0.80769 0.80325 0.80769 0.80325 0.80769 0.80325 0.80769 0.80325 0.80481 0.80683 0.79878 0.803769 0.80325 0.80484 0.80683 0.79878 0.80325 0.80484 0.80659 0.80643 0.80659 0.80643 0.80659 0.80659 0.80659 0.80660 0.80659 0.80659 0.80659 0.806584 0.806584 0.806584 0.806584 0.806588

Project: COLETO CREEK FACILITY Boring No.: B-4-1 S-13 Sample No.: S-13 Test No.: 24.3 PSI

Location: IPR-GDF SUEZ Tested By: BCM Test Date: 12/2/11 Sample Type: 3" ST

Project No.: 60225561 Checked By: WPQ Depth: 24.0'-26.0' Elevation: ----

Soil Description: CLAYEY F-C SAND LITTLE SILT - BROWNISH GRAY SC Remarks: FAILURE CRITERIA = MAXIMUM EFFECTIVE STRESS RATIO TEST PERFORMED AS PER ASTM D4767

Piston Area: 0.00 in^2 Piston Friction: 0.00 lb Piston Weight: 0.00 lb Filter Strip Correction: 0.00 tsf Membrane Correction: 0.00 lb/in Correction Type: Uniform Specimen Height: 5.93 in Specimen Area: 5.37 in^2 Specimen Volume: 31.88 in^3

Liquid Limit: 40		р1.	astic Limit:	24		Measured	Specific Gravity: 2.66
·	Vertical	Corrected	Deviator	Deviator	Pore	Horizontal	Vertical
min	Strain %	in^2	load 1b	tsf	tsf	tsf	tsf
Time min 1 0 2 5 5 3 10 4 15 5 20 6 25 7 30.001 8 35.001 9 40.001 11 50.001 11 50.001 11 50.001 11 50.001 11 60.001 11 7 100 11 15 80.001 11 15 80.001 11 15 80.001 11 10 19 120 20 130 21 140 19 120 20 130 21 140 22 150 23 160 24 170 25 180 26 190 27 200 28 210 29 220 30 31 240 32 270 33 300 31 240 32 270 33 300 31 34 330 35 36 390 37 420 38 450 39 480 40 510	Strain 0 0.017296 0.036033 0.054771 0.073508 0.092245 0.11242 0.13116 0.15134 0.17152 0.19026 0.20899 0.22773 0.26521 0.30124 0.34015 0.37907 0.41799 0.45546 0.49582 0.53473 0.57365 0.61401 0.65292 0.69184 0.7322 0.77111 0.81147 0.85039 0.8893 0.92966 1.0493 1.1689 1.2871 1.4053 1.1689 1.2871 1.4053 1.5235 1.6417 1.7599 1.8781 1.9977 2.1159	Corrected Area in^2 5.3738 5.3747 5.3757 5.3767 5.3778 5.3799 5.3809 5.3819 5.3861 5.3861 5.3861 5.389 5.3921 5.3943 5.3921 5.3943 5.3964 5.3964 5.4047 5.4047 5.4047 5.4047 5.407 5.407 5.408 5.407 5.412 5.4134 5.4178 5.4178 5.4178 5.4178 5.4178 5.422 5.424 5.4308 5.4701 5.4767 5.4635 5.4701 5.4767 5.4833 5.49	Deviator Load 1b 0 9.9129 12.588 13.427 13.847 14.319 14.843 15.945 17.046 18.515 19.931 21.189 22.553 29.739 35.088 39.127 42.746 45.788 48.463 51.138 55.439 57.274 58.9 60.474 61.837 63.306 63.935 65.824 67.082 68.131 71.121 73.639 75.999 77.939	Deviator Stress	Pressure tsf 5.042 5.1121 5.1464 5.1822 5.1958 5.2083 5.2214 5.2485 5.2632 5.2768 5.3404 5.3887 5.4322 5.4703 5.5056 5.5376 5.5664 5.5925 5.66789 5.6789	Horizontal Stress tsf 6.84 6.84 6.84 6.84 6.884	Vertical Stress tsf 6.84 6.9728 7.0086 7.0198 7.0254 7.0317 7.0386 7.0533 7.068 7.1065 7.1233 7.1415 7.233 7.1415 7.233 7.1415 7.233 7.1415 7.238 7.553 7.5785 7.6027 7.4106 7.4509 7.4864 7.5518 7.553 7.5785 7.6027 7.624 7.6446 7.6625 7.6817 7.6897 7.7144 7.7308 7.7444 7.7308 7.7444 7.7308 7.7444 7.7308 7.7444 7.7308 7.7444 7.7308 7.7444 7.7308 7.7444 7.7308 7.7444 7.7308 7.7444 7.7308 7.7444 7.7308 7.7452 7.8696 7.8926 7.99155 7.9349 7.9529 7.9715 7.988
40 510	1.9977	5.4833	79.775 81.611 83.184 84.653 86.174 87.538 88.849 90.265 91.838 93.097 94.146 95.667 96.821 97.818 99.129 99.968 101.02 101.86 102.96 104.91 104.95 105.95 106.83 109.46 110.25 111.14 112.03 112.98 113.81 114.91 115.81 116.8 117.91 118.95 120.06 120.95 121.94 122.84 123.84 124.93 125.83	1.1129 1.1315 1.148 1.1638 1.181 1.2051 1.2273 1.2456 1.2591 1.2705 1.2859 1.2953 1.3073 1.3166 1.3627 1.3732 1.3411 1.3516 1.3627 1.3732 1.3411 1.4094 1.419 1.4287 1.4388 1.4478 1.4607 1.4695 1.4803 1.4924 1.5038 1.5159 1.5253 1.5359 1.5452 1.55768	5.9441	6.84	7.9715

AECOM

80	1710	6.7036	5.7599	128.13	1.6017	5.9849	6.84	8.4417
81 82	1740 1770	6.8204 6.9386	5.7671 5.7745	128.92 130.02	1.6095 1.6212	5.9816 5.9784	6.84 6.84	8.4495 8.4612
83	1800	7.0582	5.7819	131.33	1.6354	5.9746	6.84	8.4754
84	1830	7.1793	5.7894	132.43	1.647	5.9713	6.84	8.487
85 86	1860 1890	7.2946 7.4099	5.7966 5.8039	133.48 134.58	1.658 1.6696	5.9686 5.9659	6.84 6.84	8.498 8.5096
87	1920	7.5252	5.8111	135.27	1.676	5.9621	6.84	8.516
88	1950	7.6405	5.8184	136.05	1.6836	5.9593	6.84	8.5236
89 90	1980 2010	7.7558 7.8726	5.8256 5.833	136.84 138.05	$1.6912 \\ 1.704$	5.9566 5.9528	6.84 6.84	8.5312 8.544
91	2040	7.9893	5.8404	139.25	1.7167	5.949	6.84	8 5567
92	2070	8.1075	5.8479	140.14	1.7255	5.9458	6.84	8.5655
93 94	2100 2130	8.2228 8.3396	5.8553 5.8627	140.98 141.87	1.7336 1.7424	5.942 5.9387	6.84 6.84	8.5736 8.5824
95	2160	8.4577	5.8703	143.03	1.7543	5.9338	6.84	8.5943
96 97	2190 2220	8.5745 8.6956	5.8778 5.8856	144.08 145.44	1.7649 1.7792	5.93 5.9267	6.84 6.84	8.6049 8.6192
98	2250	8.8123	5.8931	146.81	1.7936	5.9229	6.84	8.6336
99	2280	8.9305	5.9008	147.7	1.8022	5.9191	6.84	8.6422
$\begin{array}{c} 100 \\ 101 \end{array}$	2310 2340	9.0516 9.1683	5.9086 5.9162	148.17 149.11	1.8055 1.8147	5.9153 5.911	6.84 6.84	8.6455 8.6547
102	2370	9.2865	5.9239	149.79	1.8206	5.9066	6.84	8.6606
103	2400	9.4033	5.9316	150.42	1.8259	5.9028	6.84	8.6659
104 105	2430 2460	9.5214 9.6382	5.9393 5.947	151.42 152.78	1.8356 1.8498	5.899 5.8958	6.84 6.84	8.6756 8.6898
106	2490	9.7549	5 9547	153.62	1.8575	5.892	6.84	8.6975
107	2520	9.8731	5.9625	154.36	1.8639	5.8871	6.84	8.7039
108 109	2550 2580	9.9884 10.107	5.9701 5.978	155.56 156.77	1.8761 1.8882	5.8827 5.8778	6.84 6.84	8.7161 8.7282
110	2610	10.222	5.9857	158.08	1.9015	5.8729	6.84	8.7415
111 112	2640 2670	10.343 10.46	5.9937 6.0015	158.71 159.76	1.9065 1.9166	5.8686 5.8653	6.84 6.84	8.7465 8.7566
113	2700	10.46	6.0095	160.28	1.9204	5.8604	6.84	8.7604
114	2730	10.695	6.0173	161.49	1.9323	5.8556	6.84	8.7723
115 116	2760 2790	10.813 10.931	6.0253 6.0333	162.17 163.01	1.9379 1.9453	5.8512 5.8469	6.84 6.84	8.7779 8.7853
117	2820	11.049	6.0413	163.9	1.9534	5.8425	6.84	8.7934
118	2850	11.167	6.0494	164.74	1.9608	5.8392	6.84	8.8008
119 120	2880 2910	11.284 11.404	6.0573 6.0655	165.58 166.37	1.9682 1.9749	5.8349 5.8289	6.84 6.84	8.8082 8.8149
121	2940	11.519	6.0734	167.47	1.9854	5.8235	6.84	8.8254
122 123	2970	11.637 11.754	6.0815 6.0896	168.57 169.46	1.9957 2.0036	5.8197 5.8159	6.84 6.84	8.8357
124	3000 3030	11.734	6.0977	170.2	2.0036	5.8115	6.84	8.8436 8.8496
125	3060	11.992	6.106	171.14	2.018	5.8072	6.84	8.858
126 127	3090 3120	12.107 12.224	6.114 6.1222	171.88 172.56	2.024 2.0294	5.8018 5.7963	6.84 6.84	8.864 8.8694
128	3150	12.344	6.1305	173.66	2.0395	5.792	6.84	8.8795
129	3180	12.46	6.1387	174.13	2.0424	5.7865	6.84	8.8824
130 131	3210 3240	12.577 12.694	6.1469 6.1551	175.23 176.28	2.0525 2.0621	5.7827 5.7778	6.84 6.84	8.8925 8.9021
132	3270	12.813	6.1636	177.17	2.0697	5.7729	6.84	8.9097
133 134	3300 3330	12.932 13.05	6.1719 6.1803	177.8 178.69	2.0742 2.0818	5.7681 5.7632	6.84 6.84	8.9142 8.9218
135	3360		6.189	179.59	2.0892	5.7583	6.84	8.9292
136	3390	13.172 13.288	6.1973	180.27	2.0944	5.7583 5.7528	6.84	8.9344
137 138	3420 3450	13.412 13.527	6.2061 6.2144	180.84 181.89	2.098 2.1074	5.7474 5.7414	6.84 6.84	8.938 8.9474
139	3480	13.644	6.2228	182.68	2.1137	5.7371	6.84	8.9537
140 141	3510 3540	13.763 13.88	6.2315 6.2399	183.52 184.36	2.1204 2.1272	5.7316 5.7273	6.84 6.84	8.9604 8.9672
141	3570	13.998	6.2485	185.56	2.1272	5.723	6.84	8.9782
143	3600	14.118	6.2572	186.14	2.1419	5.7175	6.84	8.9819
144 145	3630 3660	14.237 14.348	6.2659 6.274	186.93 188.03	2.1479 2.1578	5.7121 5.7072	6.84 6.84	8.9879 8.9978
146	3690	14.465	6.2826	188.82	2.1639	5.7018	6.84	9.0039
147	3720	14.581	6.2911	189.76	2.1718	5.6963	6.84	9.0118
148 149	3750 3780	14.702 14.814	6.3 6.3083	190.55 191.39	2.1777 2.1844	5.6925 5.6871	6.84 6.84	9.0177 9.0244
150	3810	14.934	6.3172	192.12	2.1897	5.6817	6.84	9.0297
151 152	3840 3870	15.046 15.164	6.3255 6.3344	192.49 193.12	2.191 2.1951	5.6768 5.6719	6.84 6.84	9.031 9.0351
153	3900	15.281	6.3431	193.75	2.1951 2.1992	5.667	6.84	9.0331
154	3930	15.402	6.3522	194.27	2.202	5.6637	6.84	9.042
155	3934.9	15.419	6.3535	194.17	2.2004	5.6626	6.84	9.0404

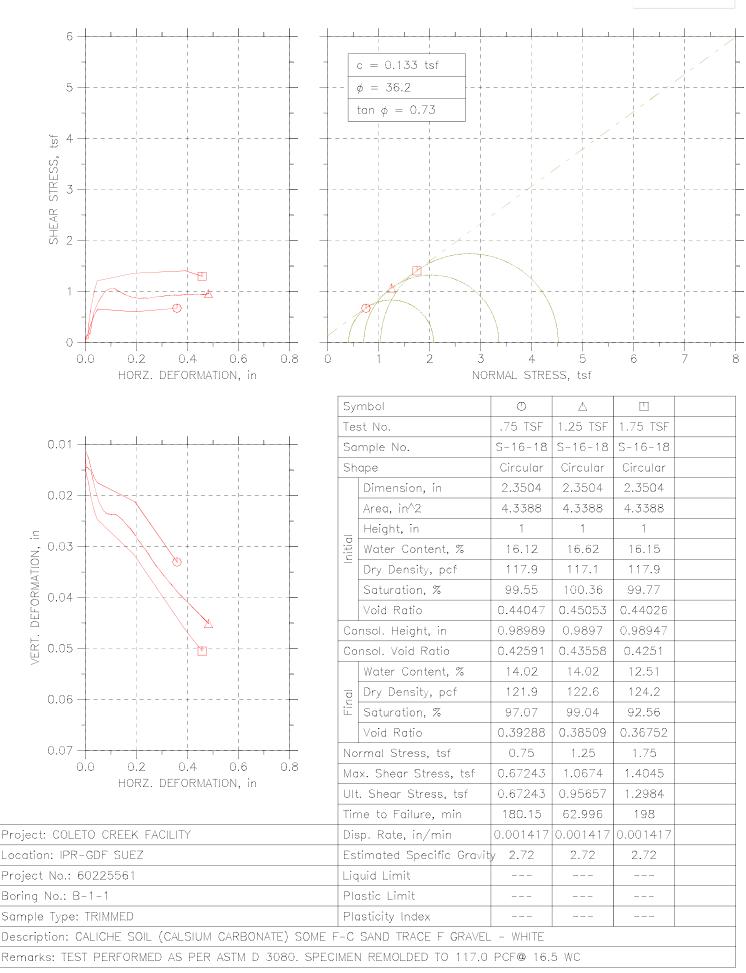
Project: COLETO CREEK FACILITY Boring No.: B-4-1 S-13 Sample No.: S-13 Test No.: 24.3 PSI

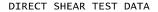
Location: IPR-GDF SUEZ Tested By: BCM Test Date: 12/2/11 Sample Type: 3" ST

Project No.: 60225561 Checked By: WPQ Depth: 24.0'-26.0' Elevation: ----

Soil Description: CLAYEY F-C SAND LITTLE SILT - BROWNISH GRAY SC Remarks: FAILURE CRITERIA = MAXIMUM EFFECTIVE STRESS RATIO TEST PERFORMED AS PER ASTM D4767

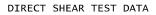
Piston Area: 0.00 in^2 Piston Friction: 0.00 lb Piston Weight: 0.00 lb Specimen Height: 5.93 in Specimen Area: 5.37 in^2 Specimen Volume: 31.88 in^3


Filter Strip Correction: 0.00 tsf Membrane Correction: 0.00 lb/in Correction Type: Uniform


Liquid Lir	mit: 40	Plastic Limit: 24				Measured Specific Gravity: 2.66				
	Vertical Strain %	Total Vertical Stress tsf	Total Horizontal Stress tsf	Excess Pore Pressure tsf	A Parameter	Effective Vertical Stress tsf	Effective Horizontal Stress tsf	Stress Ratio	Effective p tsf	q tsf
123456789012345678901234567890123456789012345678901234567890123456789012345678901234567877777777777777777777777777777777777	0.002 0.002 0.002 0.007 0.1135 0.002 0.007 0.1135 0.000 0.1135 0.000 0.1135 0.000 0.1135 0.000 0.1135 0.0000 0.0000 0.0000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.000	6.84 6.9728 7.0098 7.00198 7.0254 7.0317 7.0333 7.068 7.1063 7.12374 7.3625 7.4106 7.4509 7.4864 7.5553 7.6624 7.6625 7.6817 7.6847 7.68817 7.7444 7.7829 7.8696 7.9152 7.9152 7.9152 7.9152 7.9152 7.9152 7.9152 7.9152 7.9152 7.9152 7.9152 7.9152 7.9152 7.9152 7.9155 7.	6.84 8.84 8.84 8.88 8.88 8.88 8.88 8.88	0.070104 0.10434 0.12499 0.14021 0.15379 0.16629 0.17933 0.19238 0.20651 0.22118 0.23477 0.24781 0.29835 0.34671 0.39019 0.42823 0.46355 0.49565 0.5755 0.59724 0.61735 0.63691 0.65539 0.67115 0.686691 0.65539 0.67115 0.686691 0.72766 0.76166 0.76166 0.76185 0.85049 0.91135 0.9195 0.92548 0.93852 0.94232 0.94588 0.94939 0.95591 0.95808 0.96623 0.96623 0.96623 0.96732 0.96895 0.97058 0.97126 0.97221 0.97680 0.96895 0.96895 0.96895 0.97058 0.97120 0.96895 0.966732 0.96895 0.97058 0.97121 0.966732 0.966789 0.966732 0.966789 0.966732 0.966789	0.000 0.528 0.619 0.695 0.756 0.802 0.837 0.844 0.834 0.839 0.822 0.751 0.747 0.759 0.769 0.769 0.769 0.772 0.779 0.783 0.792 0.797 0.802 0.805 0.807 0.802 0.805 0.807 0.790 0.794 0.775 0.715	1.798 1.8607 1.8628 1.8432 1.8359 1.8336 1.8331 1.8435 1.8391 1.8435 1.8436 1.8977 1.9403 1.9453 1.9453 1.9453 1.9453 1.9664 1.9655 1.9658 1.9658 1.9658 1.9671 2.00747 2.00747 2.00747 2.00747 2.0131 2.0131 2.11538 2.1352 2.1439 2.11538 2.12833 2.1352 2.1439 2.11538 2.12833 2.1352 2.1439 2.11538 2.12833 2.1352 2.1439 2.12833 2.1352 2.1439 2.1521 2.1631 2.1739 2.1833 2.1934 2.22746 2.22746 2.22746 2.23461 2.33861 2.33861 2.33861 2.33861 2.33861 2.3403 2.44276	1.798 1.7279 1.6336 1.673 1.6578 1.6442 1.6317 1.6186 1.6056 1.5915 1.5768 1.5502 1.4996 1.4513 1.4078 1.3697 1.3344 1.3024 1.2736 1.2475 1.2225 1.2007 1.1806 1.1426 1.11268 1.1116 1.0969 1.0834 1.0703 1.0366 1.0094 0.98553 0.96543 0.94749 0.93173 0.91815 0.90674 0.89587 0.88663 0.8725 0.88663 0.8725 0.885946 0.85565 0.85239 0.84478 0.8725 0.885946 0.85565 0.85239 0.84478 0.84207 0.83989 0.83663 0.8725 0.885946 0.85565 0.85239 0.84478 0.8725 0.885946 0.85565 0.85239 0.84804 0.84207 0.83989 0.83663 0.83725 0.83663 0.83725 0.83663 0.83725 0.83739 0.82685 0.82739 0.82685 0.82739 0.82685 0.82739 0.82685 0.82739 0.82685 0.83718 0.83772 0.838860 0.83772 0.838870 0.83772 0.838870 0.83778 0.83778 0.83778 0.83778 0.83778 0.83778 0.83779 0.83685 0.83778 0.83779 0.83685 0.83779 0.83685 0.83718 0.83772 0.838881 0.83772 0.838881 0.83772 0.838881 0.83772 0.838881 0.83772 0.838881 0.83772 0.838881	1.000 1.077 1.107 1.112 1.112 1.112 1.122 1.142 1.156 1.169 1.184 1.265 1.321 1.458 1.458 1.458 1.5572 1.604 1.635 1.635 1.693 1.747 1.782 1.845 1.969 2.066 2.1114 2.1227 2.223 2.325 2.3354 2.443 2.485 2.559 2.651 2.651 2.651 2.747 2.749 2.749 2.756 2.769 2.7748 2.769 2.7748 2.7769 2.7748 2.7769 2.7748 2.7769 2.7748 2.7769	1.798 1.7943 1.7743 1.7779 1.7629 1.7505 1.741 1.7253 1.7196 1.7153 1.7196 1.7153 1.7049 1.6983 1.6656 1.6655 1.6399 1.6554 1.5725 1.5721 1.5724 1.5724 1.5728 1.5225 1.5034 1.4616 1.4632 1.4616 1.4632 1.4616 1.4633 1.4656 1.4693 1.4752 1.4776 1.4885 1.4875 1.497 1.51566 1.4693 1.4752 1.4776 1.4885 1.4875 1.51566 1.4693 1.4752 1.51566 1.4693 1.4752 1.51566 1.4693 1.4752 1.51566 1.4670 1.55248 1.55248 1.55299 1.55599 1.55599 1.55599 1.55654 1.57869 1.55869 1.55869 1.55869 1.55869 1.55869 1.55869 1.55869 1.55869 1.55869 1.56544 1.578869 1.5869	0.066397 0.084297 0.0899 0.092692 0.095834 0.099325 0.10667 0.11402 0.12382 0.1336 0.15074 0.1987 0.236123 0.26528 0.30546 0.32318 0.34088 0.36926 0.38133 0.39201 0.40232 0.41123 0.42083 0.42484 0.45218 0.47454 0.45218 0.47455 0.50258 0.51479 0.52645 0.56545 0.565645

79 80 812 83 84 85 87 99 99 90 100 100 100 100 100 100 100 10
6.59 6.70 6.82 6.70 6.82 6.70 6.82 7.18 7.29 7.41 7.64 7.76 7.89 8.11 8.22 8.34 8.57 8.81 8.95 9.17 9.40 9.45 9.45 9.45 10.34 10.58 10.69 10.81 11.75 11.87 12.12 12.34 12.58 13.76 13.76 13.76 13.76 13.76 13.76 13.76 13.76 13.76 13.76 13.76 13.76 13.76 13.76 13.76 13.76 13.76 13.76 13.76 14.81 13.76 14.81 13.76 14.81 13.76 14.81
8.428 8.4417 8.4495 8.4417 8.4495 8.4754 8.4754 8.496 8.5165 8.5236 8.5236 8.55312 8.55655 8.5547 8.56555 8.56555 8.6425 8.66492 8.66392 8.66492 8.66392 8.66492 8.66392 8.6756 8.66547 8.66598 8.7039 8.7723 8.77415
88888888888888888888888888888888888888
0.94613 0.94287 0.93961 0.93634 0.93254 0.92928 0.92656 0.92385 0.92004 0.91732 0.91461 0.9108 0.907 0.90374 0.89993 0.8967 0.88798 0.88798 0.88791 0.87711 0.87331 0.86896 0.86461 0.86896 0.864661 0.86597 0.83381 0.81353 0.8049 0.79722 0.79288 0.7869 0.78146 0.77766 0.77386 0.776516 0.77386 0.776516 0.775973 0.75429 0.774951 0.774071 0.73582 0.76951 0.775973 0.75429 0.774951 0.77569 0.773869 0.78146 0.77766 0.773882 0.78699 0.78146 0.77766 0.773882 0.78699 0.78146 0.77766 0.773882 0.78699 0.78146 0.775973 0.75429 0.774951 0.76516 0.775973 0.755429 0.774951 0.76516 0.775973 0.75429 0.774951 0.76516 0.76516 0.773882 0.76981 0.66505 0.66507
0.596 0.589 0.589 0.584 0.570 0.5549 0.5553 0.5441 0.5528 0.524 0.519 0.519 0.510 0.4497 0.4487 0.4487 0.4477 0.4488 0.4478 0.4478 0.4478 0.4488 0.4430 0.4418 0.4410 0.4018 0.4018 0.3394 0.3395 0.3312 0.3394 0.3394 0.3394 0.3394 0.3394 0.3394 0.3394 0.3394 0.3394 0.3394 0.3394 0.3394 0.3394 0.3394 0.3394 0.3396 0.3394 0.3394 0.3394 0.3395 0.3312 0.3394 0.3394 0.3395 0.3394 0.3396 0.3394 0.3396 0.3394 0.3396 0.3394 0.3396 0.3299 0.2287 0.2282
2.4398 2.4568 2.4679 2.4828 2.5009 2.5157 2.5237 2.5539 2.5643 2.57643 2.57631 2.6437 2.6437 2.6437 2.6749 2.6925 2.7723 2.77302 2.77437 2.7766 2.794 2.8059 2.8169 2.8794 2.8999 2.9168 2.9267 2.8999 2.9168 2.9268 2.8799 2.9168 2.9268 2.8799 2.9168 2.9268 2.8799 2.9168 2.9268 2.8799 2.9168 2.9268 2.8799 2.9168 2.9278 2.9388 2.9288 2.9388
0.85185 0.85511 0.85511 0.85531 0.86543 0.86543 0.86741 0.87793 0.88065 0.88737 0.88065 0.88337 0.88908 0.99130 0.90619 0.91326 0.91706 0.92087 0.92467 0.92987 0.92467 0.92987 0.92467 0.92987 0.92467 0.92987 0.94423 0.94423 0.94804 0.95293 0.95728 0.96217 0.96706 0.97141 0.97467 0.97956 0.98445 0.9888 0.99314 0.99749 1.0008 1.0011 1.0165 1.0203 1.0241 1.0285 1.0328 1.0328 1.0437 1.0437 1.0437 1.0437 1.0548 1.0573 1.0622 1.06719 1.0768 1.0719 1.10768 1.0817 1.0768 1.0926 1.0926 1.0926 1.1029 1.1029 1.1029 1.1024 1.1127 1.1225 1.1279 1.1328 1.1437 1.1475 1.1583 1.1632 1.1681 1.1774
2.864 2.873 2.875 2.882 2.890 2.996 2.909 2.911 2.915 2.927 2.930 2.933 2.936 2.938 2.957 2.953 2.956 2.959 2.959 2.956 2.960 2.962 2.966 2.966 2.966 2.966 2.966 2.966 2.966 2.968 2.959 2.958 2.959 2.958 2.959 2.959 2.959 2.959 2.958 2.959 2.958 2.959 2.958 2.959 2.958 2.959 2.958 2.959 2.958 2.958 2.958 2.958 2.958 2.958 2.958 2.958 2.958 2.958 2.958 2.958 2.958 2.958
1.6458 1.6531 1.6722 1.6832 1.6922 1.7089 1.7159 1.7225 1.7392 1.7392 1.7493 1.757 1.7648 1.7725 1.7833 1.7924 1.8029 1.8139 1.8274 1.88691 1.8274 1.88691 1.8588 1.8691 1.8768 1.88591 1.8768 1.88591 1.8768 1.8963 1.9963 1.9178 1.9247 1.933 1.9178 1.9247 1.933 1.9178 1.9247 1.933 1.9178 1.9247 1.933 1.9178 1.9247 1.933 1.9178 1.9247 1.933 1.9178 1.9247 1.933 1.9178 1.9247 1.933 1.9178 1.9247 1.933 1.9178 1.9247 1.933 1.9178 1.9247 1.9506 1.9742 1.9811 1.9892 1.9092 2.0182 2.0259 2.0259 2.0333 2.0418 2.0503 2.0584 2.0503 2.0584 2.0503 2.0584 2.0503
0.79398 0.80084 0.80084 0.80084 0.80172 0.8235 0.82899 0.8348 0.8418 0.84561 0.85199 0.85834 0.86273 0.86681 0.87113 0.88244 0.88961 0.90108 0.90108 0.90108 0.90108 0.90276 0.91296 0

DIRECT SHEAR TEST REPORT


Project No.: 60225561 Location: IPR-GDF SUEZ

Project: COLETO CREEK FACILITY Boring No.: B-1-1 Sample No.: S-16-18 Test No.: .75 TSF Tested By: BCM
Test Date: 12/17/11
Sample Type: TRIMMED Checked By: WPQ Depth: ---Elevation: ---

Soil Description: CALICHE SOIL (CALSIUM CARBONATE) SOME F-C SAND TRACE F GRAVEL - WHITE Remarks: TEST PERFORMED AS PER ASTM D 3080. SPECIMEN REMOLDED TO 117.0 PCF@ 16.5 WC

Step: 1 of 1

	Elapsed Time min	Vertical Stress tsf	Vertical Displacement in	Horizontal Stress tsf	Horizontal Displacement in	Cumulative Displacement in
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	0.00 2.00 4.00 6.00 8.00 10.00 12.00 14.00 16.00 20.00 22.00 24.00 28.00 98.00	0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75	0.01082 0.01127 0.01182 0.01225 0.01266 0.0135 0.01429 0.01498 0.01557 0.01607 0.01648 0.01683 0.01715 0.01735	0.06009 0.1469 0.143 0.2189 0.2873 0.3483 0.4009 0.4496 0.4908 0.5329 0.5689 0.6005 0.6294 0.6558	0.001129 0.004796 0.008888 0.0127 0.01651 0.02031 0.02384 0.02751 0.03104 0.03456 0.03809 0.0419 0.04543 0.04938	0.001129 0.004796 0.008888 0.0127 0.01651 0.02031 0.02384 0.02751 0.03104 0.03456 0.03809 0.0419 0.04543 0.04938
17	180.15	0.75	0.03304	0.6724	0.3589	0.3589

Project: COLETO CREEK FACILITY Boring No.: B-1-1 Sample No.: S-16-18 Test No.: 1.25 TSF

Location: IPR-GDF SUEZ

Tested By: BCM
Test Date: 12/17/11
Sample Type: TRIMMED

Project No.: 60225561 Checked By: WPQ Depth: ---Elevation: ---

Soil Description: CALICHE SOIL (CALSIUM CARBONATE) SOME F-C SAND TRACE F GRAVEL - WHITE Remarks: TEST PERFORMED AS PER ASTM D 3080. SPECIMEN REMOLDED TO 117.0 PCF@ 16.5 WC

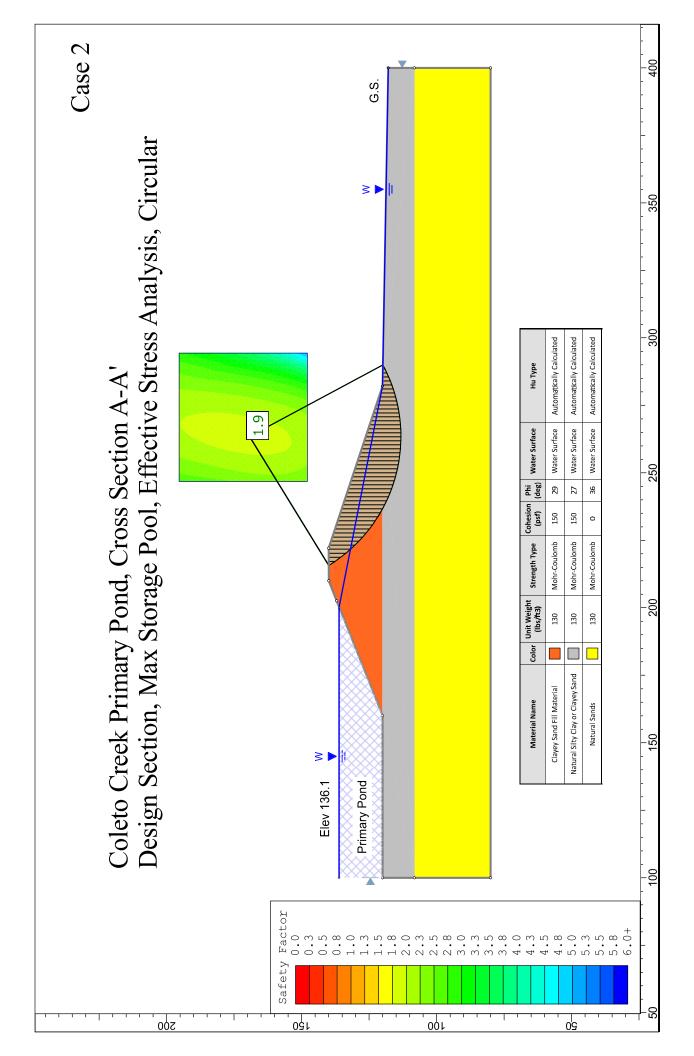
Step: 1 of 1

	0.006913 011 0.011 481 0.01481 189 0.0189
7 22.00 1.25 0.0153 0.313 0.02 9 26.00 1.25 0.01616 0.413 0.02 10 28.00 1.25 0.01777 0.5879 0.01 11 33.00 1.25 0.01777 0.5879 0.02 12 38.00 1.25 0.02117 0.8061 0.02 13 43.00 1.25 0.02212 0.8912 0.06 14 48.00 1.25 0.02302 0.9647 0.07 15 53.00 1.25 0.02348 1.018 0.08 16 58.00 1.25 0.02364 1.05 0.08 17 63.00 1.25 0.02364 1.067 0.3 18 68.00 1.25 0.02364 1.064 0.3 19 73.00 1.25 0.02364 1.064 0.3 19 73.00 1.25 0.02385 1.029 0. 20 78.00	261 0.0261 263 0.02963 315 0.03315 246 0.04246 206 0.05206 193 0.06193 209 0.07209 198 0.09198 021 0.1021 126 0.1126 123 0.133 333 0.1333 3436 0.1436 542 0.1542 548 0.1648 759 0.1859 264 0.1964 268 0.2068 174 0.2174 277 0.2277 378 0.2378 248 0.248 377 0.2673 372 0.2673 372 0.2769 374 0.3074 176 0.3176 378 0.3578 379 0.3476 379 0.3476 379 0.3476 379 0.3476 379 0.3476 379 0.3478

DIRECT SHEAR TEST DATA

Location: IPR-GDF SUEZ

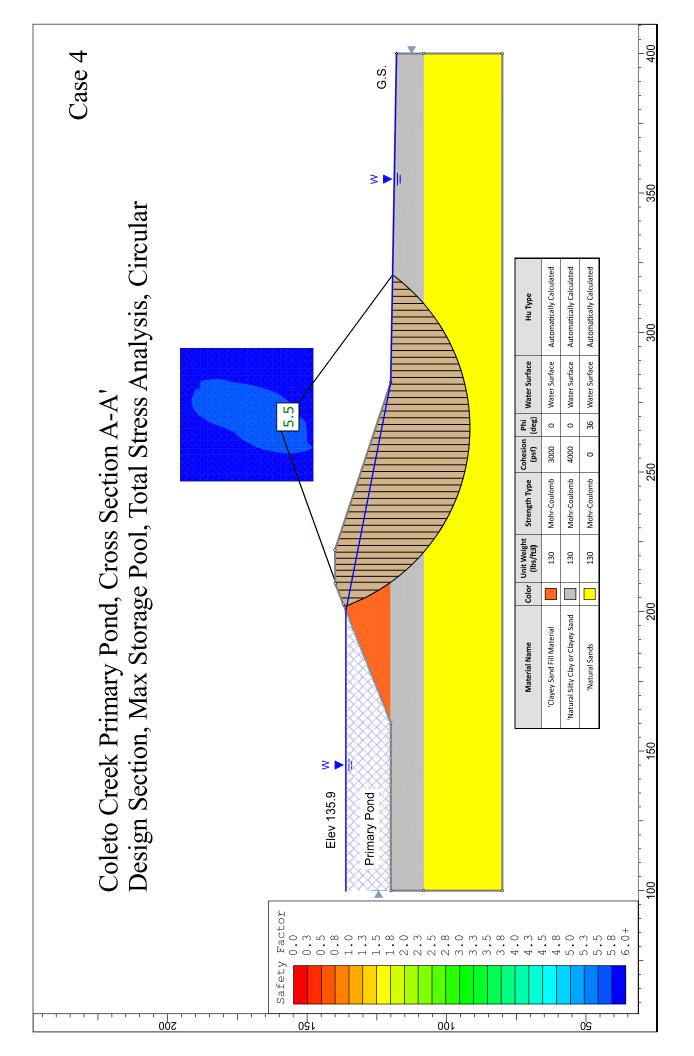
Project No.: 60225561 Checked By: WPQ Depth: ----Elevation: ----Project: COLETO CREEK FACILITY Boring No.: B-1-1 Sample No.: S-16-18 Test No.: 1.75 TSF Tested By: BCM
Test Date: 12/17/11
Sample Type: TRIMMED


Soil Description: CALICHE SOIL (CALSIUM CARBONATE) SOME F-C SAND TRACE F GRAVEL - WHITE Remarks: TEST PERFORMED AS PER ASTM D 3080. SPECIMEN REMOLDED TO 117.0 PCF@ 16.5 WC

Step: 1 of 1

	Elapsed Time min	Vertical Stress tsf	Vertical Displacement in	Horizontal Stress tsf	Horizontal Displacement in	Cumulative Displacement in
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	0.00 4.00 6.00 8.00 10.00 12.00 14.00 16.00 18.00 20.00 22.00 24.00 28.00 98.00 198.00	1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75	0.01256 0.01529 0.0162 0.01687 0.01767 0.01877 0.01979 0.0207 0.02152 0.02223 0.02289 0.02361 0.02409 0.02466 0.0315 0.04639	0.1083 0.107 0.1474 0.3553 0.497 0.615 0.7159 0.8062 0.904 0.9887 1.072 1.144 1.209 1.356 1.405	0.001552 0.00522 0.009311 0.0127 0.01622 0.01961 0.02328 0.02694 0.03061 0.03414 0.03809 0.0419 0.04585 0.1888 0.392	0.001552 0.00522 0.009311 0.0127 0.01622 0.01961 0.02328 0.02694 0.03061 0.03414 0.03809 0.0419 0.04585 0.1888 0.392
17	243.36	1.75	0.0505	1.298	0.4572	0.4572

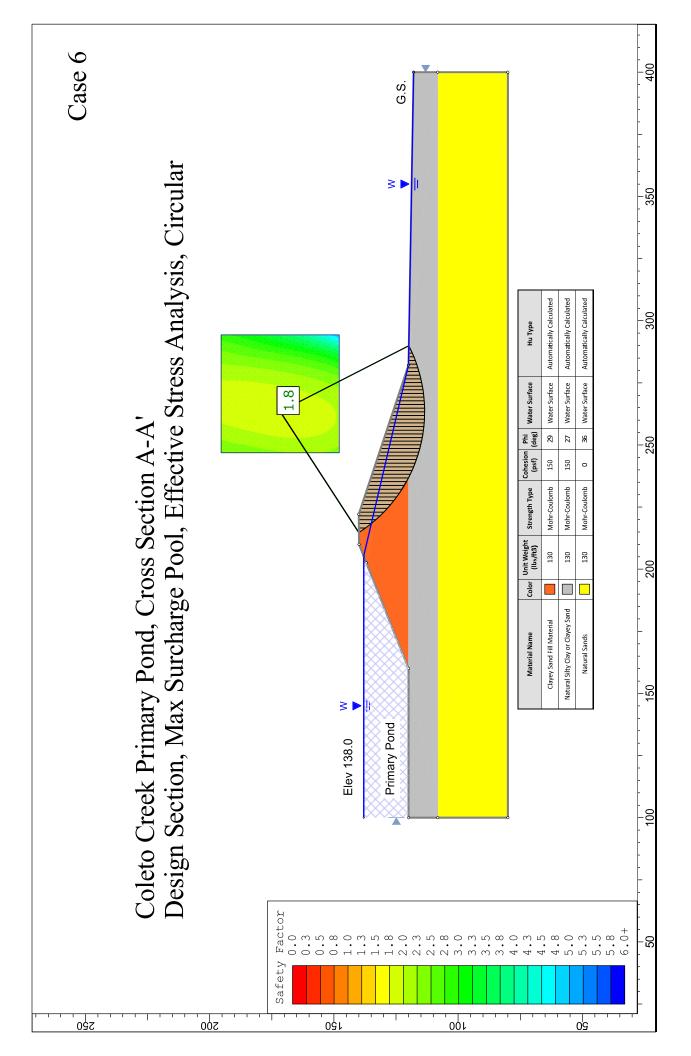
Bullock, Bennett & Associates, LLC



Bullock, Bennett & Associates, LLC

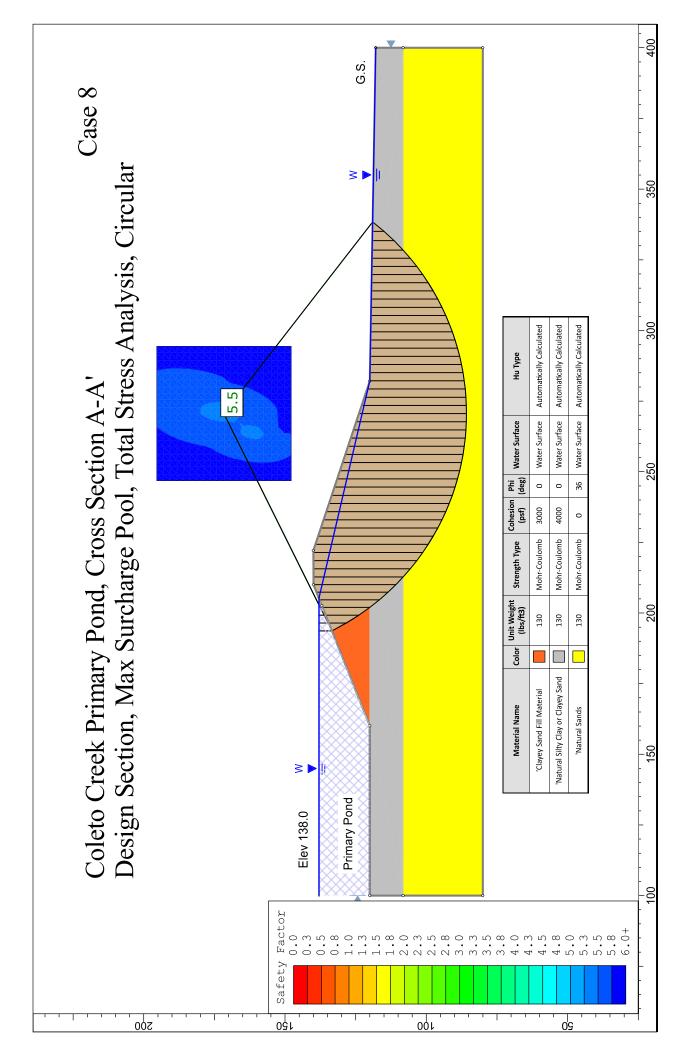
Coleto 2_A-A_design_maxstor_eff_cir.slmd

Bullock, Bennett & Associates, LLC

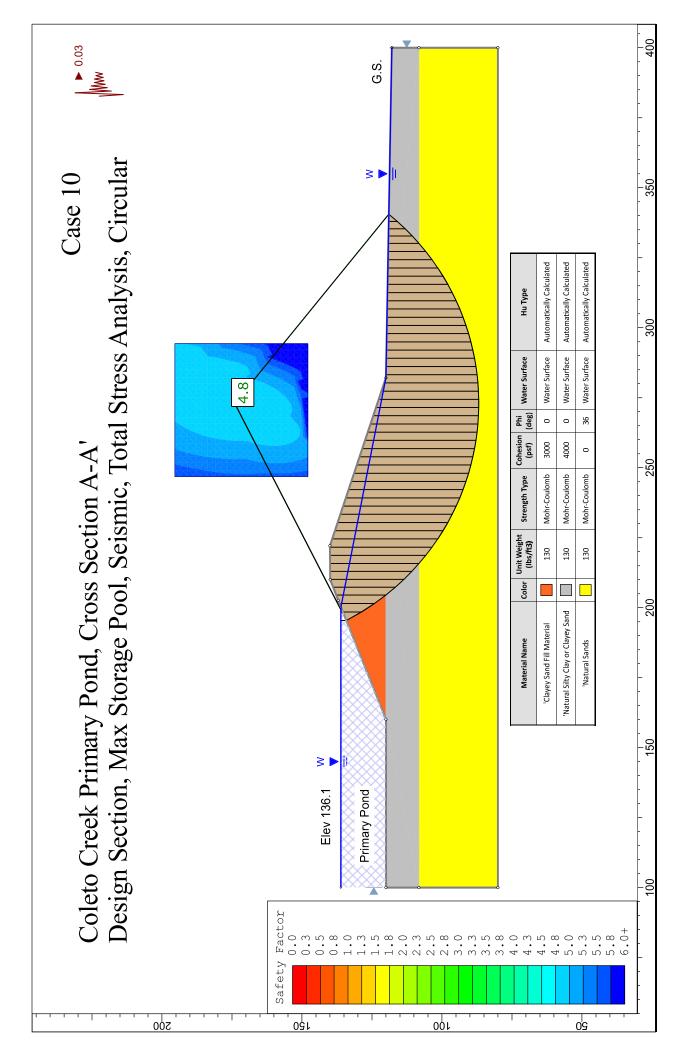

Coleto 3_A-A_design_maxstor_tot_noncir.slmd

Bullock, Bennett & Associates, LLC

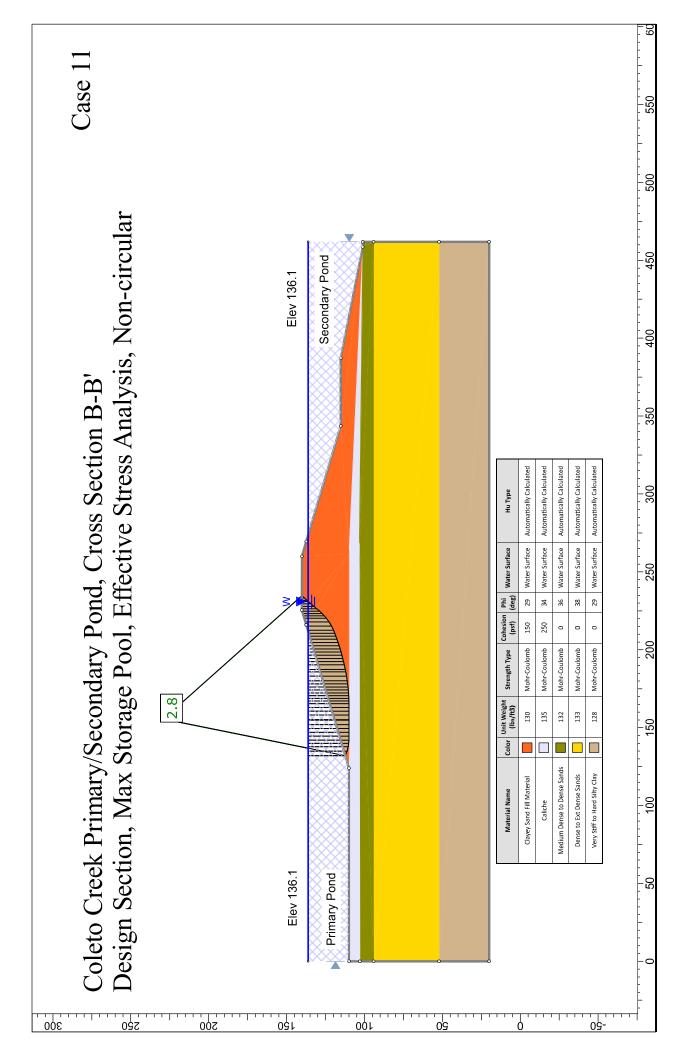
Bullock, Bennett & Associates, LLC


Coleto 5_A-A_design_maxsur_eff_noncir.slmd

Bullock, Bennett & Associates, LLC

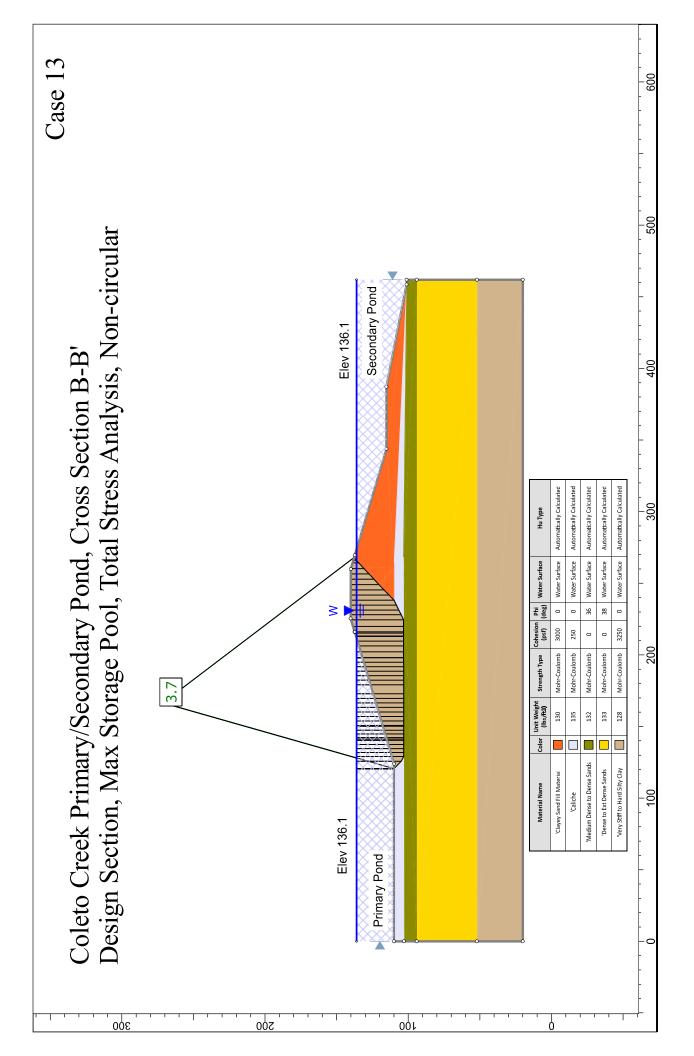

Bullock, Bennett & Associates, LLC

Coleto 7_A-A_design_maxsur_tot_noncir.slmd

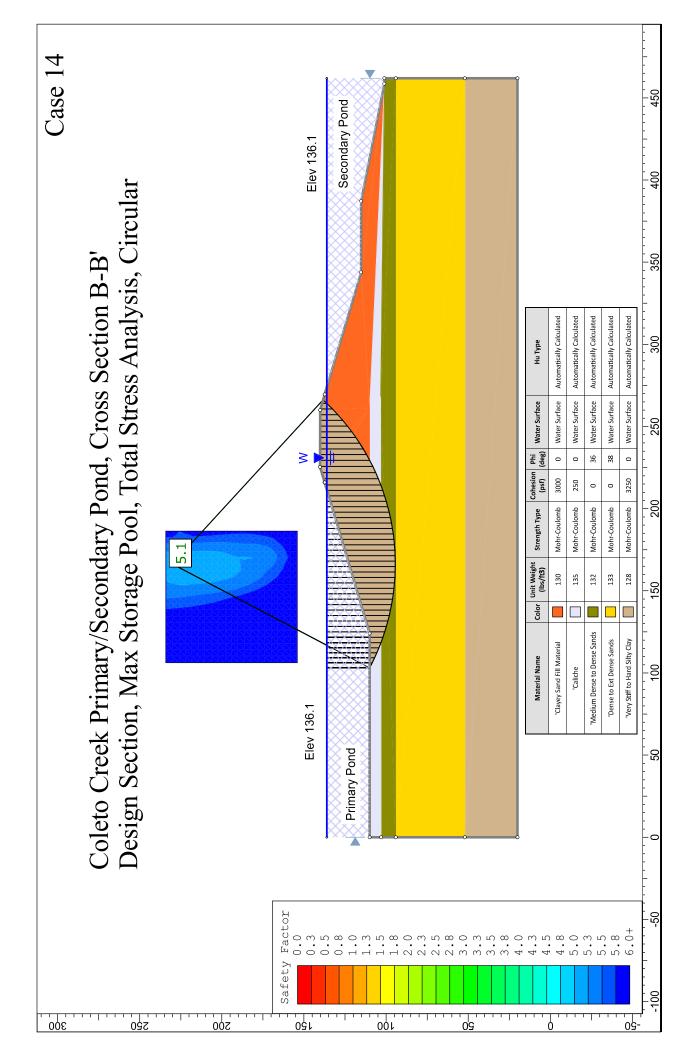

Bullock, Bennett & Associates, LLC

Bullock, Bennett & Associates, LLC

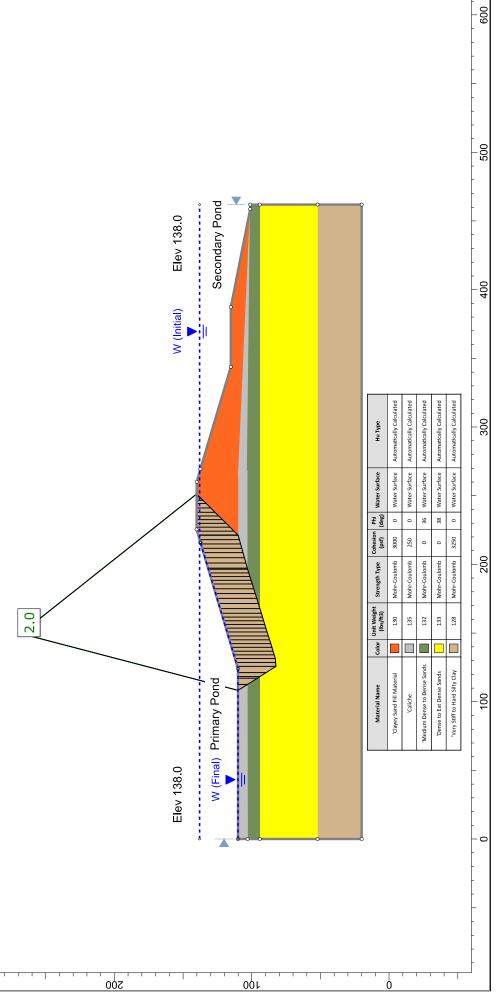
Bullock, Bennett & Associates, LLC


Coleto 10_A-A_design_maxstor_seis_tot_cir.slmd

Bullock, Bennett & Associates, LLC


Coleto 11_B-B Design_maxstor_effective_noncirc.slmd

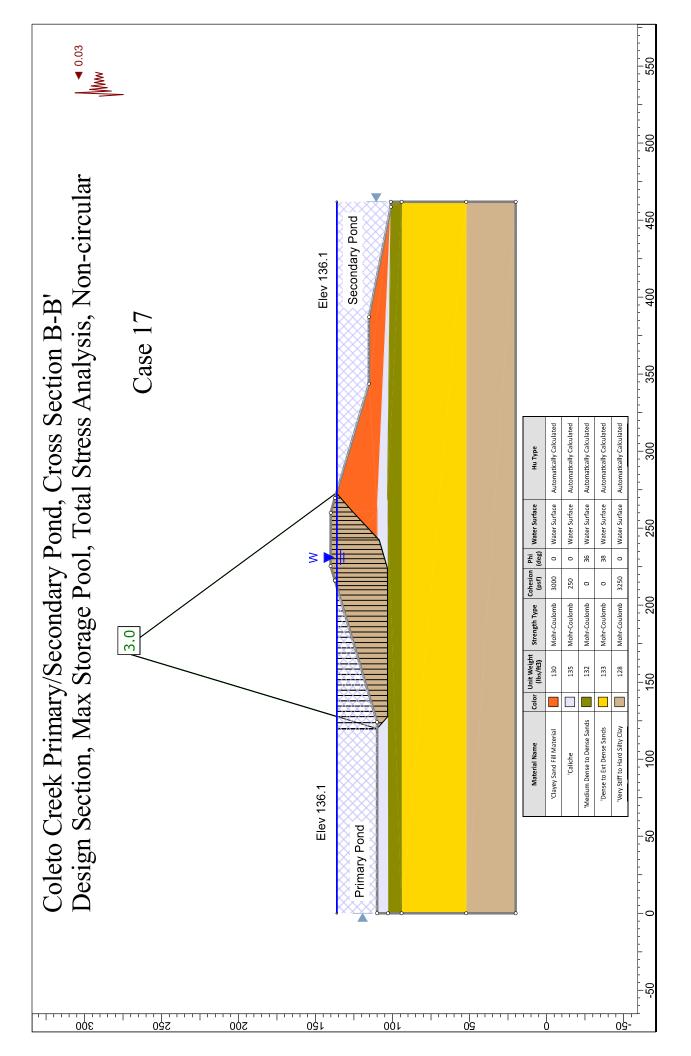
Bullock, Bennett & Associates, LLC



Bullock, Bennett & Associates, LLC

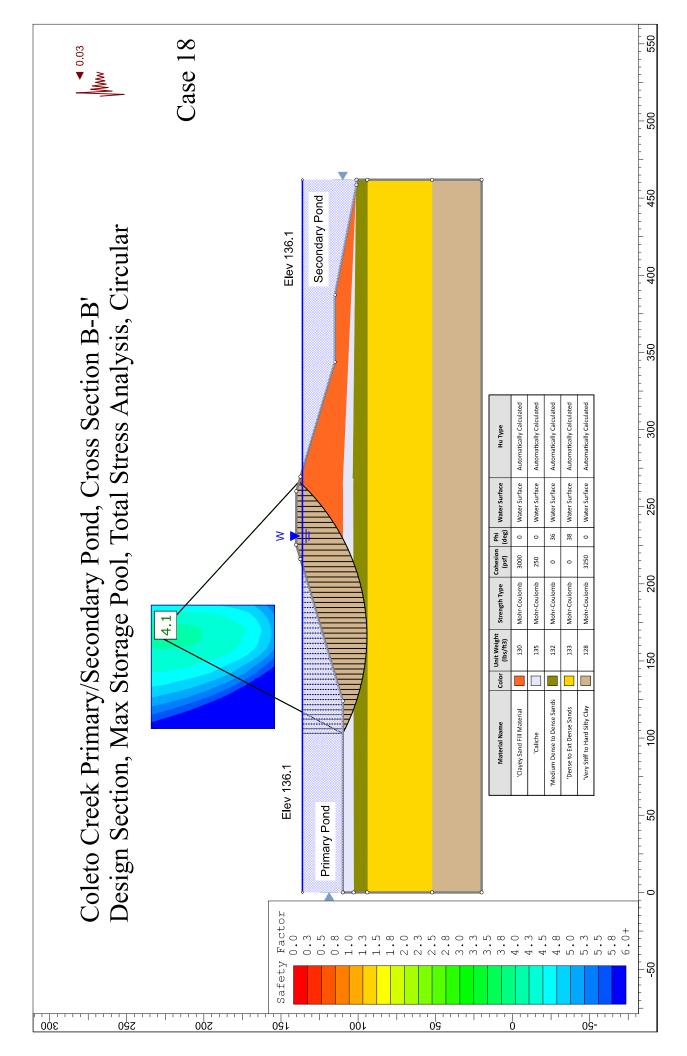
Coleto 13_B-B Design_maxstor_total_noncirc.slmd

Bullock, Bennett & Associates, LLC


Bullock, Bennett & Associates, LLC

Coleto 15_B-B Model_Maxsur_Rapid DD_total_noncirc.slmd

300


200

Bullock, Bennett & Associates, LLC

Bullock, Bennett & Associates, LLC

Coleto 17_B-B Design_maxstor_total__seismic_noncirc.slmd

Bullock, Bennett & Associates, LLC

APPENDIX D

LIQUEFACTION FACTOR OF SAFETY

ASSESSMENT METHODOLOGY

Coleto Creek Power Station

Sources: Coduto, Donald P., Geotechnical Engineering Principles and Practices. Prentice-Hall.

Rauch, Alan F., May 1997. EPOLLS: An Empiracle Method for Predicting Surface

Displacements Due to Liquefaction-Induced Lateral Spreading in Earthquakes. Dissertation Submitted to Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for degree of Doctor of Philosophy in Civil Engineering.

United States Environmental Protection Agency (USEPA), April 1995. RCRA Subtitle D (258) Seismic Design Guidance for Municipal Solid Waste Landfill Facilities. Office of Research and Development. Washington, DC. EPA/600/R-95/051

Methodology: Standard Penetration Test (SPT)

Step 1: Compute the standardized value of number of blow counts per foot normalized for overburden stress at the depth of the test

$$(N_1)_{60} = NSPT \cdot C_N \cdot CE \cdot CB \cdot CS \cdot C_R$$

where:

 $(N_1)_{60}$ = Measured blowcount normalized for overburden stress at the depth of the test C_N = Correction factor to normalize the measured blowcount to an equivalent value under one atmosphere of effective overburden stress

$$C_{N} = \sqrt{\frac{Pa}{\sigma'_{vo}}} \le 2.0$$

where:

Pa = one atmosphere of pressure (101.325kPa) in the same units as σ'_{vo} = vertical efffective stress at depth of N_{SPT}

C_E =Correction factor of the measured SPT blowcount for level of energy delivered by the SPT hammer,

1.0 for safety hammer type with rope and pulley hammer release

 C_B = Correction factor for borehole diameters outside the recommended range of 2.5 to 4.5 inch, 1.0 for borehole inside range

C_S = Correction factor for SPT samplers used without a sample liner, 1.0 for standard sampler

C_R = Correction factor for loss of energy through reflection in short lengths of drill rod:

where:

For z < 3 m; $C_R = 0.75$

For 3 < z < 9 m; $C_R = (15+z)/24$

For z > 9 m; $C_R = 1.0$

where: $z = length of drill rod in meters (approximately equal to depth of <math>N_{SPT}$)

Step 2: Compute a clean-sand equivalent value of $(N_1)_{60}$

$$(N_1)_{60} - cs = (N_1)_{60} + \Delta(N_1)$$

where:

 $\Delta(N_1)_{60}$ = correction factor computed as follows:

For FC < 5%, $\Delta(N_1)_{60} = 0.0$

For 5 < FC < 35%, $\Delta(N_1)_{60} = 7*(FC - 5)/30$

For FC > 35%, $\Delta(N_1)_{60} = 7.0$

where:

FC = Fines content (percent finer than 0.075 mm)

Note: Where data was available, those FC were used. Otherwise, representative values from the USGS standard soil classification were used for the soil type observed during drilling.

Step 3: Compute the cyclic resistance ratio for a standardized magnitude 7.5 earthquake (CRR $_{M7.5}$)

$$100 \cdot CRR_{M7.5} = \frac{95}{34 - (N_1)_{60} - cs} + \frac{(N_1)_{60} - cs}{1.3} - \frac{1}{2}$$

Note: A value of $(N_1)_{60}$ -cs > 30 indicates an unliquefiable soil with an infinite CRR. Designated as UL in the calculation tables.

Step 4: Adjust the standardized cyclic resistance ratio for the worst-case magnitude of earthquake for the area

$$CRR = CRRM_{75} MSF \cdot K\sigma \cdot K\alpha$$

where:

MSF = magnitude scaling factor computed as follows:

For
$$M_w < 7.0$$
; MSF = $10^{3.00} * M_w^{-3.46}$

where:

 M_w = estimated worst-case magnitude eartquake, 6.1 taken from Figure 3.3 Seismic Source Zones in the Contiguous United States (USGS, 1982) and Table 3.1 Parameters for Seismic Source Zones (USGS, 2982) (USEPA, 1995)

Note: Two additional correction factors are potentially applicable for liquefiable soil deposits subject to significant overburden with a stress factor greater than 1 tsf (2000 psf) (K σ) or static shear stresses such as significant slopes (K α). K σ values were interpolated using Figure 5.7 Curves for Estimation of Correction Factor (Harder 1988, and Hynes 1988, as Quoted in Marcuson, et.al., 1990) (USEPA, 1998). No K α factor was applied due to the relatively flat ground surface in the area.

Step 5: Estimate the average cyclic shear stress (CSR)

$$CSR = 0.65 \cdot \frac{a_{max}}{g} \cdot \frac{\sigma_{vo}}{\sigma'_{vo}} \cdot rd$$

where:

 a_{max}/g = peak horizonal acceleration that would occur at the ground surface in the absence of excess pore pressures or liquefaction, 0.03 g taken from the 2014 United States Geological Survey National Seismic Hazard Maps found at

http://earthquake.usgs.gov/hazards/products/conterminous/2014/2014pga2pct.pdf).

 σ_{vo} = total vertical overburden stress

 $g = acceleration due to gravity, 9.81 m/s^2$

 r_d = stress reduction factor calculated as follows for depths up to 30 m:

$$r_d = 1.0 + 1.6*10^{-6}(z^4 - 42z^3 + 105z^2 - 4200z)$$

Step 6: Calculate the Factor of Safety against liquefaction (FS_{lig})

$$FS_{liq} = \frac{CRR}{CSR}$$

LIQUEFACTION FACTOR OF SAFETY ASSESSMENT TEST BORING B-1-1 Coleto Creek Power Plant

4", to 50' bgs 3", 50' to end of boring

ft pcf pcf

12 125 130 62.3 6.1

Average Unsaturated Soil Unit Weight, y_d = Average Saturated Soil Unit Weight, y_s = Average Water Unit Weight, y_w = Earthquake Magnitude, M_w = Borehole Diameter =

Depth to Water =

	FS _{liq}	'n	32	28	56	16	18	14	17	15	22	16	'n	13	9	11	14	15	'n	15	'n	П	'n	'n	'n	'n	Π	'n	24									
	CSR	'n	0.019	0.019	0.019	0.020	0.021	0.022	0.023	0.024	0.025	0.025	'n	0.025	0.025	0.025	0.025	0.025	'n	0.025	'n	П	'n	0.015														
	P	1.00	0.99	0.99	0.98	0.97	96.0	96.0	0.95	0.94	0.93	0.92	0.91	0.90	0.89	0.88	0.88	0.87	0.86	0.84	0.83	0.82	0.80	0.79	0.77	0.73	0.68	0.64	0.59	0.57	0.52	0.48	0.46	0.44	0.43	0.44	0.47	0.51
	d رو	250	200	750	1000	1760	2020	2280	2540	3060	3320	3580	3840	4100	4451	4620	4711	4880	5140	5400	2660	5920	6180	6440	9029	7350	8000	8650	9300	0696	10470	11120	11770	12420	12940	13850	14500	15150
	a _{max} /g	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03
	CRR	ĭ	0.62	0.55	0.51	0.33	0.39	0.31	0.40	0.35	0.54	0.39	ĭ	0.32	0.15	0.27	0.36	0.39	ĭ	0.39	0.68	0.50	ĭ	Ⅎ	Ы	IJ	ĭ	ĭ	IJ	ĭ	ĭ	ĭ	ĭ	ĭ	ĭ	IJ	ĭ	0.37
	Κα	Ν	NA	N	N	N	NA	N	0.93	0.92	0.92	0.91	0.91	0.90	0.90	0.90	0.89	0.89	0.89	0.88	0.88	0.87	0.87	0.86	0.86	0.85	0.84	0.83	0.81	0.81	0.79	0.78	0.77	0.76	0.75	0.74	0.68	0.67
	MSF	1.92	1.92	1.92	1.92	1.92	1.92	1.92	1.92	1.92	1.92	1.92	1.92	1.92	1.92	1.92	1.92	1.92	1.92	1.92	1.92	1.92	1.92	1.92	1.92	1.92	1.92	1.92	1.92	1.92	1.92	1.92	1.92	1.92	1.92	1.92	1.92	1.92
	CRR _{M7.5}	IJ	0.33	0.29	0.26	0.17	0.20	0.16	0.22	0.20	0.31	0.22	'n	0.19	0.09	0.16	0.21	0.23	Ы	0.23	0.40	0.30	IJ	'n	'n	'n	Ы	'n	In	Ы	IJ	'n	Ы	П	'n	IJ	Ы	0.29
	$(N_1)_{60}$ -cs	67.0	26.5	24.6	23.4	16.1	18.8	15.1	20.4	18.6	25.7	20.3	31.7	17.3	7.3	14.7	19.6	20.9	30.8	20.9	28.9	25.4	48.4	40.4	35.5	34.1	43.4	38.8	63.7	37.3	29.3	30.8	34.8	34.1	33.6	55.0	31.1	24.6
	$\Delta(N_1)_{60}$	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	2.3	2.3	0.0	0.0	0.0	0.0	2.3	0.0	0.0	0.0	0.0	0.0	0.0	7.0	7.0	7.0	0.0	2.3	7.0	7.0	7.0	7.0	7.0	7.0
	S																																			06		
	$(N_1)_{60}$	0.09	19.5	17.6	16.4	9.1	11.8	8.1	13.4	11.6	18.7	13.3	24.7	10.3	5.0	12.3																				48.0		17.6
	ٸ	0.75	0.75	0.75	0.75	0.80	0.83	0.85	0.88	0.93	0.96	0.98	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
	ؿ	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
	ٿ	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
	ٿ	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
	ی		2.00	1.68	1.45	1.14	1.09	1.05	1.02	0.96	0.93														0.71			0.64	0.62	0.61						0.52	0.47	0.46
°,	(bst)	250	200	750	1000	1635.4	1770.8	1906.2	2041.6	2312.4	2447.8	2583.2	2718.6	2854	3036.79	3124.8	3172.19	3260.2	3395.6	3531	3666.4	3801.8	3937.2	4072.6	4208	4546.5	4885	5223.5	2925	5765.1	6171.3	6509.8	6848.3	7186.8	7457.6	7931.5	9216	9854.5
Soil	N _{SPT} Type	40 SC	13 SC	14 SC	15 SC	10 SC	13 SC	o SC	15 SC	13 SC	21 SC	15 SC	28 SC	12 SC	e sm	15 SM	24 SP	26 SP	39 SP	27 SP	35 SM	34 SP	66 SP	56 SP	50 SP	50 SP	66 SP	50 SC	92 SC	50 SC	50 SP	50 SM	20 CL	50 CL	50 SC	93 CH	51 CH	38 CH
	Note	Unsaturated	Unsaturated	Unsaturated	Unsaturated	Saturated																																
Depth	(m)	0.61	1.22	1.83	2.44	4.27	4.88	5.49	6.10	7.32	7.92	8.53	9.14	9.75	10.58	10.97	11.19	11.58	12.19	12.80	13.41	14.02	14.63	15.24	15.85	17.37	18.90	20.42	21.95	22.86	24.69	26.21	27.74	29.26	30.48	32.61	34.14	35.66
Depth	(£)	2	4	9	∞	14	16	18	20	24	26	28	30	32	34.7	36	36.7	38	40	42	44	46	48	20	52	22	62	29	72	75	81	98	91	96	100	107	112	117
Sample	Number	1	2	9	4	7	∞	6	10	12	13	14	15	16	18	18A	19	19A	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39

Source: AECOM, 2012. (See Appendices A and B for boring logs and laboratory testing results)

LIQUEFACTION FACTOR OF SAFETY ASSESSMENT TEST BORING B-2-1¹ Coleto Creek Power Plant

4", to 50' bgs 3", 50' to end of boring

ft pcf pcf

32 125 130 62.3 6.1

Average Unsaturated Soil Unit Weight, y_d = Average Saturated Soil Unit Weight, y_s = Average Water Unit Weight, y_w = Earthquake Magnitude, M_w = Borehole Diameter =

Depth to Water =

		FS _{liq}	'n	ĭ	31	23	24	19	30	16	18	21	22	19	24	17	12	17	6	17	9	23	21	31	'n	'n	25	23	'n	П	31	40	П	П	П	'n	Π
		CSR	'n	In	0.019	0.019	0.019	0.019	0.019	0.019	0.018	0.018	0.018	0.018	0.018	0.018	0.018	0.019	0.019	0.019	0.019	0.019	0.019	0.018	'n	In	0.017	0.016	Ы	'n	0.014	0.013	'n	'n	'n	ĭ	'n
		P	1.00	0.99	0.99	0.98	0.98	0.97	96.0	96.0	0.95	0.94	0.93	0.91	0.90	0.88	0.87	98.0	0.84	0.83	0.82	0.80	0.79	0.77	0.74	0.69	0.65	0.60	0.56	0.52	0.48	0.46	0.43	0.44	0.46	0.50	0.54
		g _{vo}	250	200	750	1000	1250	1750	2000	2250	2750	3000	3250	3750	4000	4520	4780	5040	2300	2260	5820	0809	6340	0099	7120	7770	8420	9070	9720	10370	11020	11670	12970	13750	14270	14920	15310
		a _{max} /g	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03
		CRR	Ⅎ	Ħ	09:0	0.45	0.46	0.36	0.56	0:30	0.34	0.38	0.39	0.34	0.43	0.31	0.22	0.31	0.17	0.31	0.11	0.43	0.39	0.57	ĭ	Ы	0.43	0.36	∄	ĭ	0.41	0.52	ĭ	ĭ	П	Ⅎ	UL
		Κα	NA	NA	NA	Ν	NA	NA	NA	Ν	0.91	0.90	0.89	0.88	0.87	98.0	0.85	0.85	0.84	0.84	0.84	0.83	0.83	0.82	0.81	0.80	0.79	0.78	0.77	0.76	0.74	0.73	0.71	0.70	69.0	0.68	0.67
		MSF	1.92	1.92	1.92	1.92	1.92	1.92	1.92	1.92	1.92	1.92	1.92	1.92	1.92	1.92	1.92	1.92	1.92	1.92	1.92	1.92	1.92	1.92	1.92	1.92	1.92	1.92	1.92	1.92	1.92	1.92	1.92	1.92	1.92	1.92	1.92
		CRR _{M7.5}	Π	'n	0.31	0.23	0.24	0.19	0.29	0.15	0.19	0.22	0.23	0.20	0.26	0.19	0.14	0.19	0.11	0.19	0.07	0.27	0.25	0.36	Π	'n	0.28	0.24	'n	'n	0.29	0.37	Π	'n	Π	'n	UL
			32.5	38.5	25.9	21.2	21.6	17.6	24.9	14.4	18.1	20.3	20.9	19.0	23.0	17.6	12.5	17.9	9.4	17.9	5.0	23.9	22.3	27.7	30.9	32.6	24.3	22.0	34.5	32.3	24.9	28.1	31.7	40.8	39.4	34.1	42.6
		$\Delta(N_1)_{60}$ (I	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	0.0	0.0	0.0	0.0	0.0	7.0	7.0	7.0	1.2	0.0	7.0	0.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0
		5	32	32	32	32	37.3	32	35	42.3	35	35	35.2	32	38.4	32	35	32	1	1	1	.	1	32	45.7	32	10	1	32	20	92.4	90	35	90	90	90	06
		$(N_1)_{60}$	25.5	31.5	18.9	14.2	14.6	10.6	17.9	7.4	11.1	13.3	13.9	12.0	16.0	10.6	5.5	10.9	9.4	17.9	2.0	23.9	22.3	20.7	23.9	25.6	23.2	22.0	27.5	32.3	17.9	21.1	24.7	33.8	32.4	27.1	35.6
		ٿ	0.75	0.75	0.75	0.75	0.75	0.80	0.83	0.85	0.90	0.93	96.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
		౮	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
		ى	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
		ٿ	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
		ی	2.00	2.00	1.68	1.45	1.30	1.10	1.03	0.97	0.88	0.84	0.81	0.75	0.73	0.70	69.0	0.68	0.67	99.0	0.65	0.65	0.64	0.63	0.61	0.60	0.58	0.56	0.55	0.54	0.53	0.51	0.49	0.48	0.48	0.47	0.46
0	ď. و	(bst)	250	200	750	1000	1250	1750	2000	2250	2750	3000	3250	3750	4000	4270.8	4406.2	4541.6	4677	4812.4	4947.8	5083.2	5218.6	5354	5624.8	5963.3	6301.8	6640.3	8.8269	7317.3	7655.8	7994.3	8671.3	9077.5	9348.3	8.9896	6.6886
		N _{SPT} Type	17 SC	21 SC	15 SC	13 SC	15 SC	12 SC	21 SC	o SC	14 SC	17 SC	18 SC	16 SC	22 SC	15 SC	8 SC	16 SC	14 SP	27 SP	25 SP	37 SP	35 SP	33 SM	39 SC	43 SC	40 SP-SM	39 SP	50 SM	60 CL-ML-S	34 CH	41 CH	50 SC	70 CH	68 CH	58 CH	77 CH
		Note N _s	Unsaturated	Jnsaturated	Saturated	Saturated	Saturated	Saturated	Saturated	Saturated	Saturated	Saturated	Saturated	Saturated	Saturated	Saturated	Saturated	Saturated	Saturated	Saturated	aturated	Saturated	Saturated	Saturated	Saturated	Saturated	Saturated										
			0.61 Unsat	1.22 Unsat	1.83 Unsat	2.44 Unsat	3.05 Unsat	4.27 Unsat	4.88 Unsat	5.49 Unsat	_	_	_	_	9.75 Satu	10.97 Satu	11.58 Satu			13.41 Satu				15.85 Satu			20.12 Satu	•	•	_			••	32.61 Satu	33.83 Satu		36.27 Satu
		ב	7	4	9	∞	10	14	16								38 1			44 1					56 1									107 3	,	,	119 3
		er (ft)	1	2	e	4	2	7	∞	6	11	12	13	15	16	18	19	20	21A	22	23	24	25	56	27	28	59	30	31	32	33	34	36	37	38	39	40
	Sample	Number																	. 4																		

Source: AECOM, 2012. (See Appendices A and B for boring logs and laboratory testing results)

LIQUEFACTION FACTOR OF SAFETY ASSESSMENT TEST BORING B-2-2¹ Coleto Creek Power Plant

ft pcf pcf

3.5 125 130 62.3 6.1

Average Unsaturated Soil Unit Weight, y_d = Average Saturated Soil Unit Weight, y_s = Average Water Unit Weight, y_w = Earthquake Magnitude, M_w = Borehole Diameter =

Depth to Water =

3", to end of boring

	CSR	0.019	0.019	0.024	0.027	0.028	0.029	0.029	'n	'n	0.031	ĭ	ĭ	'n	'n	ĭ	0.028	'n	'n	'n	'n	'n
	^D	1.00	0.99	0.99	0.99	0.98	0.98	0.98	0.97	0.97	0.95	0.93	0.91	0.89	98.0	0.82	0.79	0.75	0.74	0.71	99.0	0.61
	۵۰۰					1155																
	a _{max} /g	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03
	CRR	0.30	1.05	0.88	0.46	0.38	0.45	0.35	ĭ	ĭ	0.76	Ⅎ	Ⅎ	ĭ	ĭ	Ⅎ	0.57	ĭ	ĭ	ĭ	Ⅎ	'n
	Κα	Ν	NA	NA	N	N	NA	NA	N	N	NA	Ν	0.92	0.92	0.91	0.89	0.88	0.87	0.87	0.86	0.85	0.84
	MSF	1.92	1.92	1.92	1.92	1.92	1.92	1.92	1.92	1.92	1.92	1.92	1.92	1.92	1.92	1.92	1.92	1.92	1.92	1.92	1.92	1.92
	CRR _{M7.5}	0.16	0.55	0.46	0.24	0.20	0.23	0.18	'n	'n	0.40	'n	'n	'n	'n	'n	0.34	'n	'n	'n	'n	In
	(N ₁) ₆₀ -cs	14.5	31.0	29.9	21.7	18.5	21.3	17.1	35.6	39.0	28.8	35.1	40.4	50.9	55.6	40.9	27.1	41.6	88.4	66.2	41.0	43.8
	$\Delta(N_1)_{60}$	7.0	7.0	7.0	0.0	0.0	0.0	0.0	7.0	7.0	7.0	0.0	0.0	7.0	7.0	0.0	7.0	0.0	0.0	7.0	7.0	7.0
	S					1																
	$(N_1)_{60}$	7.5	24.0	22.9	21.7	18.5	21.3	17.1	28.6	32.0	21.8	35.1	40.4	43.9	48.6	40.9	20.1	41.6	88.4	59.2	34.0	36.8
	ئ	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.80	0.75	0.88	0.94	1.02	1.07	1.12	1.20	1.0	1.0	1.0	1.0	1.0	1.0
	ڻ	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
	ئ	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
	ٿ	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
	ی	2.00	2.00	2.04	1.81	1.65	1.58	1.52	1.37	1.34	1.18	1.07	0.97	0.91	0.87	0.81	0.77	0.74	0.74	0.71	0.68	99:0
g. %	(bsd)	125	375	510.4	645.8	781.2	848.9	916.6	1119.7	1187.4	1525.9	1864.4	2270.6	2541.4	2812.2	3218.4	3556.9	3827.7	3895.4	4166.2	4572.4	4910.9
Soil	Туре	0	0	SC	SP	SP	SP	SP	M	C	M	SP	SP	SC	SC	SP	J	SP	SP	J	SM	Н
	N _{SPT}	5	16	15	16	15	18	15	56	32	21	35	41	45	20	42	56	26	120	83	20	26
	Note	Jnsaturated	Insaturated	Saturated																		
Depth	(m)	_		1.52	2.13	2.74									11.89	13.72	15.24	16.46	16.76	17.98	19.81	21.34
Depth	Œ	1	က	5	7	6	10	11	14	15	20	25	31	32	39	45	20	54	22	29	65	70
Sample	Number	1	2	m	4	5	9	6A	7	7A	80	6	10	11	12	13	14	15	15A	16	17	18

 $\mathsf{FS}_{\mathsf{liq}}$

Source: AECOM, 2012. (See Appendices A and B for boring logs and laboratory testing results)

LIQUEFACTION FACTOR OF SAFETY ASSESSMENT TEST BORING B-3-1¹ Coleto Creek Power Plant

	CSR	'n	5 5	≓ ≡	0.019	0.019	0.019	0.019	0.019	0.019	0.018	0.018	0.018	0.018	0.018	'n
	Ŀ	1.00	0.99	0.99	0.98	0.98	0.97	0.97	96.0	0.95	0.94	0.93	0.92	0.92	0.91	0.88
	g vo	125	375	625 875	1175	1375	1625	1875	2000	2625	2875	3375	3565	3627.5	3877.5	4502.5
	max/g	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03
	CRR a	'n	ゴ :	∃ ∃	0.33	0.44	0.37	0.32	0.68	0.41	0.46	0.42	0.35	0.42	0.35	'n
	Κσ	ΑN	₹ S	4 2	1 4 2 2	ΑN	NA	ΝΑ	Ν	0.91	06:0	0.89	0.88	0.88	0.87	0.85
	MSF	1.92	1.92	1.92	1.92	1.92	1.92	1.92	1.92	1.92	1.92	1.92	1.92	1.92	1.92	1.92
	CRR _{M7.5} N	In	ゴ :	5 =	0.17	0.23	0.19	0.17	0.35	0.23	0.27	0.24	0.21	0.25	0.21	In
	N ₁) ₆₀ -cs CRF		32.5													
	$\Delta(N_1)_{60}$ $(N_1)_{6}$		7.0													
	•		35													
	os FC		25.5													
	(N ₁) ₆₀		0.75													
28.0 and 28.5 ft bgs)	٣		1.0													
n 28.0 and i	٣		0. 8													
nd betwee	ٿ	.0 1.	.0	0. 0	0.0	1.0 1.	1.0 1.	1.0 1.	.0 1.	1.0 1.	1	1.0 1.	1.0 1.	1.0 1.	1.0 1.	.0 1.
ata was fou	ٿ	00 1	0 2	7 7	2. 7.			``	3 1	•						1 1
ff (Only saturated strata was found between pcf pcf pcf g	ی			5 1.84			5 1.14	5 1.06	0 1.03	5 0.90			5 0.77		5 0.74	5 0.69
ft (Only s. pcf pcf pcf ing	o o (psf)	12	375	625	1125	1375	1625	1875	2000	2625	2875	3375	3533.85	3627.5	3877.5	4502.5
- O	Type	19 SC	17 SC	26 SC) 0 0 0 0 0	15 SC	12 SC	11 SC	24 SC	18 SC	21 CL	19 SC	16 SC	20 SM	17 SM	65 SM
28 125 130 62.3 6.1 4", to 30' 3", to en	N _{SPT}	pa	- FG	ם כ	, D TC	pa	pa	pa	pa	pa	pa	pa	-	pa	pa	pa
$_{\rm V_S} =$	Note	0.30 Unsaturated	0.91 Unsaturated	1.52 Unsaturated	Unsaturated	3.35 Unsaturated	3.96 Unsaturated	Unsaturated	4.88 Unsaturated	6.40 Unsaturated	Unsaturated	Unsaturated	Saturated	Unsaturated	9.45 Unsaturated	10.97 Unsaturated
l Unit Weight init Weight. Sint, Yw. =	(m)	0:30	0.91	1.52	2.13	3.35	3.96	4.57	4.88	6.40	7.01	8.23	8.69	8.84	9.45	10.97
er = turated Soil ated Soil U r Unit Weig agnitude, N reter =	Depth (ft)	1	ന	۲ ک	۰ 6	11	13	15	16	21	23	27	28.5	59	31	36
Watu Jnsa atur Vate ce M ce M	Sample	н	2	m <	t ru	9	7	00	8A	11	12	14	15	15A	16	17

FS_{ia} UL UL UL 17 17 17 22 22 23 23 UL UL UL

Source: AECOM, 2012. (See Appendices A and B for boring logs and laboratory testing results)

LIQUEFACTION FACTOR OF SAFETY ASSESSMENT TEST BORING B-3-2¹ Coleto Creek Power Plant

ft pcf pcf

14 125 130 62.3 6.1

Average Unsaturated Soil Unit Weight, y_d = Average Saturated Soil Unit Weight, y_s = Average Water Unit Weight, y_w =

Depth to Water =

3", to end of boring

Earthquake Magnitude, $M_{\rm W}$ = Borehole Diameter =

	FS _{liq}	53	36	'n	ĭ	37	33	Ы	22	Ħ	П	П
	CSR	0.019	0.019	П	ĭ	0.019	0.019	П	0.020	П	П	Ы
	P	1.00	0.99	0.99	0.99	0.99	0.98	0.98	0.97	0.95	0.94	0.92
		125										
	a _{max} /g	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03
	CRR	0.56	0.71	ĭ	Ⅎ	0.71	0.63	Ħ	0.42	Ħ	ĭ	П
	Κσ	Ν	NA	NA	Ν	Ν	NA	Ν	Ν	Ν	0.92	0.91
	MSF	1.92	1.92	1.92	1.92	1.92	1.92	1.92	1.92	1.92	1.92	1.92
	CRR _{M7.5}	0.29	0.37	IJ	П	0.37	0.33	П	0.22	'n	'n	П
	ž	25.0										
	$\Delta(N_1)_{60}$	7.0										
	FC	32	20	20	20	20	20	35	1	32	1	1
	$(N_1)_{60}$	18.0	21.0	27.0	24.8	21.0	19.5	44.3	20.3	31.2	43.4	45.0
	ڻ	0.75	0.75	0.75	0.75	0.75	0.75	0.76	0.82	0.75	0.93	0.99
	ؿ	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
	ٿ	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
	ٿ	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
	ک	2.00	2.00	2.00	1.84	1.56	1.37	1.24	1.08	0.99	0.93	0.87
م ه	(bst)	125	375	200	625	875	1125	1375	1817.7	2156.2	2427	2765.5
Soil	Туре	SM	J	J	J	J	J	SM	SP	SM	SP	SP
	N _{SPT}	12	14	18	18	18	19	47	23	42	20	52
	Note	Unsaturated	Unsaturated	1.22 Unsaturated	Unsaturated	Unsaturated	Unsaturated	Unsaturated	Saturated	Saturated	Saturated	Saturated
Depth	(E)	0.30	0.91	1.22	1.52	2.13	2.74	3.35	4.57	6.10	7.32	
Depth	(£)	-	co	4	2	7	6	11	15	20	24	29
Sample	Number	П	2	2A	e	4	2	9	7	∞	6	10

Source: AECOM, 2012. (See Appendices A and B for boring logs and laboratory testing results)

LIQUEFACTION FACTOR OF SAFETY ASSESSMENT TEST BORING B-4-1¹ Coleto Creek Power Plant

pcf pcf pcf

35.6 125 130 62.3 6.1

Average Unsaturated Soil Unit Weight, y_d = Average Saturated Soil Unit Weight, y_s = Average Water Unit Weight, y_w = Earthquake Magnitude, M_w = Borehole Diameter =

Depth to Water =

3", to end of boring

sample I	Depth	Deptn			Soil	ğ																
Number	(£	(m)	Note	N_{SPT}	Type	(bst)	ی	ٿ	ٿ	٣	ڻ	$(N_1)_{60}$	5	$\Delta(N_1)_{60}$	$(N_1)_{60}$ -cs	CRR _{M7.5}	MSF	Кσ	CRR	a _{max} /g	g _{vo}	P
1	1	0.30 U	Jnsaturated	17	SC	125	2.00	1.0	1.00	1.0	0.75	25.5	12.8	1.8	27.3	0.35	1.92	N	0.67	0.03	125	1.00
2	n	0.91 U	Jnsaturated	12	SC	375	2.00	1.0	1.00	1.0	0.75	18.0	12.8	1.8	19.8	0.21	1.92	NA	0.41	0.03	375	0.99
ĸ	5		Jnsaturated	12	SC	625	1.84	1.0	1.00	1.0	0.75	16.6	12.8	1.8	18.4	0.20	1.92	NA	0.38	0.03	625	0.99
9	11		Jnsaturated	14	SC	1375	1.24	1.0	1.00	1.0	0.76	13.2	12.8	1.8	15.0	0.16	1.92	N	0.31	0.03	1375	0.98
∞	14	4.27 L	Insaturated	21	SC	1750	1.10	1.0	1.00	1.0	0.80	18.5	12.8	1.8	20.3	0.22	1.92	N	0.42	0.03	1750	0.97
6	17	5.18 L	Unsaturated	20	SC	2125	1.00	1.0	1.00	1.0	0.84	16.8	12.8	1.8	18.6	0.20	1.92	0.93	0.38	0.03	2125	96.0
10	19	5.79 L	Jnsaturated	29	SC	2375	0.94	1.0	1.00	1.0	0.87	23.8	12.8	1.8	25.6	0.31	1.92	0.92	0.59	0.03	2375	96.0
11	20	6.10 U	Insaturated	16	J	2500	0.92	1.0	1.00	1.0	0.88	13.0	20	7.0	20.0	0.22	1.92	0.92	0.41	0.03	2500	0.95
11A	21	6.40 ∟	Unsaturated	23	J	2625	0.90	1.0	1.00	1.0	0.89	18.4	20	7.0	25.4	0.30	1.92	0.91	0.58	0.03	2625	0.95
12	22	6.71 L	Unsaturated	24	J	2750	0.88	1.0	1.00	1.0	0.90	18.9	20	7.0	25.9	0.31	1.92	0.91	09.0	0.03	2750	0.95
12A	23	7.01 L	Jnsaturated	22	J	2875	98.0	1.0	1.00	1.0	0.92	17.4	20	7.0	24.4	0.28	1.92	0.90	0.54	0.03	2875	0.94
14	27	8.23 L	Unsaturated	25	SC	3375	0.79	1.0	1.00	1.0	0.97	19.2	35	7.0	26.2	0.32	1.92	0.89	0.61	0.03	3375	0.93
15	29	8.84 ∟	Unsaturated	23	SC	3625	92.0	1.0	1.00	1.0	0.99	17.4	35	7.0	24.4	0.28	1.92	0.88	0.54	0.03	3625	0.92
16	31	9.45 L	Unsaturated	26	SM	3875	0.74	1.0	1.00	1.0	1.0	19.2	35	7.0	26.2	0.32	1.92	0.87	0.61	0.03	3875	0.91
17	34		Jnsaturated	22	J	4242	0.71	1.0	1.00	1.0	1.0	15.5	20	7.0	22.5	0.25	1.92	0.86	0.48	0.03	4242	0.89
17A	36		Saturated	28	SP	4477.08	69.0	1.0	1.00	1.0	1.0	19.3	1	0.0	19.3	0.21	1.92	0.85	0.40	0.03	4502	0.88
18	41		Saturated	35	SP	4815.58	99.0	1.0	1.00	1.0	1.0	23.2	1	0.0	23.2	0.26	1.92	0.84	0.50	0.03	5152	0.85
19	46		Saturated	35	SP	5154.08	0.64	1.0	1.00	1.0	1.0	22.4	1	0.0	22.4	0.25	1.92	0.83	0.48	0.03	5802	0.82
20	51	15.54 U	Jnsaturated	9	SP	6427	0.57	1.0	1 00	1	1	34.4	-	0.0	34.4	Ξ	1 92	0 79	Ξ	0.03	6427	0.78

CSR 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011

Source: AECOM, 2012. (See Appendices A and B for boring logs and laboratory testing results)

LIQUEFACTION FACTOR OF SAFETY ASSESSMENT TEST BORING B-4-2¹ Coleto Creek Power Plant

	14	#
sted Soil Unit Weight, $y_d =$	125	pct
Average Saturated Soil Unit Weight, y_s =	130	bcţ
werage Water Unit Weight, y,, =	62.3 pcf	bcf
Earthquake Magnitude, $M_{ m w}$ =	6.1	
Borehole Diameter =	3", to end of boring	oring

	ŭ										
	$(N_1)_{60}$	34.5	49.5	38.6	25.7	11.3	11.5	11.9	25.1	10.4	37.4
	ٸ	0.75	0.75	0.75	0.75	0.76	0.82	0.75	0.94	0.99	1.00
	౮	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
	ى	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
	ٿ	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
	گ	2.00	2.00	1.84	1.56	1.24	1.08	0.99	0.92	0.87	0.87
d_ °°	(bst)	125	375	625	875	1375	1817.7	2156.2	2494.7	2765.5	2799.35
Soil	Type	SM									
	N_{SPT}	23	33	28	22	12	13	16	29	12	43
	Note	Unsaturated	Unsaturated	Unsaturated	Unsaturated	Unsaturated	Saturated	Saturated	Saturated	Saturated	Saturated
Depth	(m)	0:30	0.91	1.52	2.13	3.35	4.57	6.10	7.62	8.84	
Depth	(£)	⊣	33	2	7	11	15	20	25	29	29.5
Sample	Number	⊣	2	m	4	9	7	∞	6	10	10A

UL UL UL 20 20 112 111 15

UL UL UL 0.019 0.022 0.023 0.024 UL

1.00 0.99 0.99 0.99 0.98 0.97 0.95 0.95

α_{vo}
375
375
625
875
1375
1380
2530
3180
3765

0.03 0.03 0.03 0.03 0.03 0.03

UL UL UL 0.38 0.24 0.25 0.35 0.36

NA NA NA NA NA 0.93 0.92

UL UL UL 0.20 0.13 0.13 0.29 0.19

41.5 56.5 45.6 32.7 18.3 11.5 11.9 25.1 17.4 37.4

7.0 7.0 7.0 7.0 7.0 0.0 0.0 0.0 7.0 0.0

35 35 35 35 1 1 35 35

 $\Delta(N_1)_{60}$ $(N_1)_{60}$ -cs

Source: AECOM, 2012. (See Appendices A and B for boring logs and laboratory testing results)

LIQUEFACTION FACTOR OF SAFETY ASSESSMENT TEST BORING B-5-1 Coleto Creek Power Plant

ft pcf pcf

32 125 130 62.3 6.1

Average Unsaturated Soil Unit Weight, y_d = Average Saturated Soil Unit Weight, y_s = Average Water Unit Weight, y_w = Earthquake Magnitude, M_w = Borehole Diameter =

Depth to Water =

3", to end of boring

	P	1.00	0.99	0.99	0.99	0.98	0.98	0.97	0.97	0.97	96.0	96.0	0.95	0.95	0.91	06.0	0.88	0.85	0.82	0 79
	α _{vo}	125	375	625	875	1125	1375	1500	1625	1875	2125	2375	2500	2625	3875	4130	4520	5170	5820	6340
	a _{max} /g	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03
	CRR	ĭ	ĭ	ĭ	0.64	0.38	0.49	98.0	0.48	0.31	0.37	0.85	0.44	09.0	0.62	0.56	ĭ	ĭ	0.68	Ξ
	Kσ	N	NA	0.93	0.92	0.92	0.91	0.87	98.0	98.0	0.85	0.84	0.83							
	MSF	1.92	1.92	1.92	1.92	1.92	1.92	1.92	1.92	1.92	1.92	1.92	1.92	1.92	1.92	1.92	1.92	1.92	1.92	1 92
	CRR _{M7.5}	'n	'n	'n	0.33	0.20	0.26	0.19	0.25	0.16	0.20	0.44	0.23	0.31	0.32	0.29	'n	'n	0.36	Ξ
	(N ₁) ₆₀ -cs	58.0	46.0	38.7	26.8	18.3	22.8	17.7	22.4	15.0	18.2	29.7	20.8	25.9	26.4	24.9	42.2	39.1	27.6	30 9
	$\Delta(N_1)_{60}$ (7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	0.0	0.0	7.0	7.0
	FC	35	32	35	35	32	32	35	35	32	32	32	32	83.9	20	35	1	1	32	35
	$(N_1)_{60}$	51.0	39.0	31.7	19.8	11.3	15.8	10.7	15.4	8.0	11.2	22.7	13.8	18.9	19.4	17.9	42.2	39.1	50.6	23.9
	ڻ	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75
	ؿ	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	0
	ى	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1 00
	ٿ	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	0
	ی	2.00	2.00	1.84	1.56	1.37	1.24	1.19	1.14	1.06	1.00	0.94	0.92	0.90	0.74	0.72	0.70	0.68	0.65	0.64
ر م'	(bst)	125	375	625	875	1125	1375	1500	1625	1875	2125	2375	2500	2625	3875	4067.7	4270.8	4609.3	4947.8	5218 G
Soil	Type	SC	J	J	SM	SP	SP	SM	NS											
	N _{SPT}	34	26	23	17	11	17	12	18	10	15	32	20	28	35	33	80	77	42	C.
	Note	Unsaturated	Unsaturated	Unsaturated	Unsaturated	Unsaturated	Unsaturated	Unsaturated	Unsaturated	Unsaturated	Unsaturated	Unsaturated	Unsaturated	Unsaturated	Unsaturated	Saturated	Saturated	Saturated	Saturated	Saturated
Depth	(m)	0.30	0.91	1.52	2.13	2.74	3.35	3.66					6.10		9.45	10.06	10.97	12.50	14.02	15 24
Depth	Œ	1	33	5	7	6	11	12	13	15	17	19	20	21	31	33	36	41	46	C ₂
Sample	Number	-	2	3	4	2	9	7	7A	8	6	10	11	11A	16	17	18	19	70	21

UL 0.019

Source: AECOM, 2012. (See Appendices A and B for boring logs and laboratory testing results)

ATTACHMENT 3-1

TABLE 1

COLETO CREEK RESERVOIR AREAS AND CAPACITIES INITIAL CONDITIONS*

6	6	145	547	1408	2787	4949	9223			4	611	3843	13,160	33,996	71,597	140,328	
80	0	120	495	1299	2652	4706	8725	·		0	479	3322	11,807	31,277	69,769	131,354	
7		100	442	1189	2514	4458	8229		-		369	2853	10,563	28,695	62,187	122,878	
9		80	397	1087	2369	4207	7734		FEET		279	2434	9425	26,254	57,855	114,807	
2	ACRES	09	351	984	2230	3954	7234		CAPACITY IN ACRE-FEET		209	2060	8389	23,955	53,744	107,409	
4	AREA IN ACRES	20	314	910	2084	3698	6763		APACITY		154	1727	7442	21,798	49,949	100,406	
· 60		42	277	835	1940	3461	6324		S		108	1432	6570	19,786	46,370	93,863	
2		34	239	758	1796	3255	5910			·	70	1174	5774	17,917	43,012	87,747	
1		56	200	619	1650	3077	5531				40	954	5055	16,194	39,846	82,027	
0		18	170	599	1504	2918	5190	9723			18	769	4416	14,617	36,849	76,667	149,800
Elev.	20	09	70	80	90	100	110	120		20	09	70	80	90	100	110	120

^{*}Areas and capacities of impoundments behind Dike Nos. 1 and 2 are not included in this tabulation.

ATTACHMENT 3-2

TABLE 2

COLETO CREEK PROJECT AREAS AND CAPACITIES SULPHUR CREEK BEHIND DIKE NO. 1 INCLUDING FLUME NO. 1

Elev.	0	1	. 2	3	4	5	6	7	8	9
	•				AREA II	N ACRES				ı
70 80 90 100 110 120	3 49 151 329 770	5 56 164 358	7 64 178 388	10 73 193 419	14 82 207 455	18 90 223 499	22 101 240 540	0 26 113 259 590	1 31 126 279 641	2 36 138 303 699
				CAPAC	CITY IN	ACRE-FE	EET			
70 80 90 100 110 120	4. 199 1141 3429 8570	8 251 1299 3773	14 311 1470 4146	23 379 1656 4550	35 456 1856 4987	51 542 2071 5464	71 638 2303 5984	95 745 2553 6549	0 123 865 2822 7165	2 157 997 3113 7835

ATTACHMENT 3-3

TABLE 3

COLETO CREEK PROJECT AREAS AND CAPACITIES TURKEY CREEK BEHIND DIKE NO. 2 INCLUDING FLUME NO. 2

Elev	. 0	1	2	3	4	5	6	7	8	9
					AREA II	N ACRES				
70 80 90 100 110 120	38 167 391 791 1537	0 46 184 429 - 831	55 200 467 882	3 65 217 506 947	6 76 234 545 1032	250 583	13 101 270 623 1206	115 293 663	24 130 322 705 1374	31 146 355 748 1458
				CAPA	ACITY II	N ACRE-1	FEET			
70 80 90 100 110 120	124 1048 3654 9513 20,819	0 166 1224 4064 10,324	0 216 1416 4512 11,181	1624 4998	5524	6089	523 2352 6691	41 631 2634 7334 16,572	62 754 2942 8018 17,905	89 892 3281 8744 19,321

SITE INFORMATION				
Site Name / Address Owner Name / Address	Coleto Creek Power Station, 45 FM 2987 Fannin, Goliad County, TX Coleto Creek Power, LP 1500 Eastport Plaza Drive Collinsville, IL 62234			
CCR Unit	Primary Ash Pond		Final Cover Type	Soil/Synthetic Liner System
Reason for Initiating Closure	Known final receipt of waste/Final removal of beneficial reuse materials		Closure Method	Close In-Place
CLOSURE PLAN DESCRIPTION				
(b)(1)(i) — Narrative description of how the CCR unit will be closed in accordance with this section.	The Primary Ash Pond will be closed such that contained CCR solids will remain in-place. In accordance with §257.102(b)(3), this written closure plan will be amended to provide additional details after the final engineering design for the grading and cover system is completed. This closure plan reflects the best information available to date, and the plan may be amended in the future.			
(b)(1)(iii) — If closure of the CCR unit will be accomplished by leaving CCR in place, a description of the final cover system and methods and procedures used to install the finalcover.	First, the Primary Ash Pond will be dewatered with the resulting water to be discharged through existing TPDES Outfall No. 003. CCR solids will be graded and leveled, then covered with a final cover system as described below. Existing perimeter dikes will remain intact and the final cover system will tie into these dikes. The cover system will consist of the following elements, listed in order from contact with the CCR to the top: 1) subgrade leveling fill (as needed); 2) 1 foot thick soil liner with a permeability not to exceed the permeability of 1 x 10 st cm/sec; 3) Synthetic Liner System consisting of: Geosynthetic Clay Liner (GCL), Textured (both sides) 40 Mil Linear-Low Density Polyethylene Flexible Membrane Liner (LLDPE-FML), Double Sided (geotextile fabric on both sides) Geonet Drainage Layer; and 4) 24-inch Protective/Vegetative Soil Layer. The top of the final cover system will be vegetated to minimize erosion. The final cover will be sloped to promote drainage and storm water runoff.			
(b)(1)(iii) — How the final cover system will achieve the performance standards in §257.102(d).				
(d)(1)(i) Control, minimize or eliminate, to the maximum extent feasible, post-closure infiltration of liquids into the waste and releases of CCR, leachate, or contaminated run-off to the ground or surface waters or to the atmosphere.		The permeability of the final cover will be equal to or less than the permeability of the bottom liner or a permeability no greater than 1×10^5 cm/sec, whichever is less, and will be graded to prevent ponding and promote drainage.		
(d)(1)(ii) — Preclude the probability of future impoundment of water, sediment, or slurry.		The final cover will be sloped across the unit as needed to preclude the probability of future impoundment of water, sediment, or slurry.		
(d)(1)(iii) — Include measures that provide for major slope stability to prevent the sloughing or movement of the final cover system during the closure and post-closure care period.		The top of the vegetated final cover system will be sloped and the outsides of the perimeter dikes will be vegetated as necessary to minimize the potential for erosion. The cap system will be designed by a Qualified Professional Engineer in a manner to prevent sloughing or movement of the final cover system and geotechnical testing and evaluation will be performed as needed during and after construction to confirm that engineering slope stability standards have been acrieved.		
(d)(1)(iv) — Minimize the need for further maintenance of the CCR unit.		The vegetative cover will be regularly mowed and maintained to minimize the potential for erosion or other structural issues that would cause more extensive and long-term maintenance issues. The storm water control system will be regularly inspected for proper operation.		
$\label{eq:completed} (d)(1)(v) - \text{Be completed in the shortest amount of time consistent with recognized and generally accepted good engineering practices}.$		Construction would occur in a phased approach as sections of the impoundment are prepared, enabling expedited capping of portions of the CCR impoundment.		
(d)(2)(i) – Free liquids must be eliminated by removing liquid wastes or solidifying the remaining wastes and waste residue.		The unit will be dewatered sufficiently to remove the free liquids to provide a stable base for the construction of the final cover system.		
$\label{eq:continuity} (d)(2)(ii) - Remaining wastes must be stabilized sufficiently to support the final cover system.$		Dewatering and regrading of existing in-place CCR will sufficiently stabilize the waste such that the final cover will be supported.		
(d)(3)—A final cover system must be installed to minimize infiltration and erosion, and at minimum, meets the requirements of (d)(3)(i).		The final cover system will be constructed as described above in accordance with (d)(3)(i) and will minimize infiltration and erosion.		
(d)(3)(i)—The design of the final cover system must be included in the written closure plan.		When the final design of the final cover system is completed, the written closure plan will be amended to include the detailed final design.		
(d)(3)(i)(A) – The permeability of the final cover system must be less than or equal to the permeability of any bottom liner system or natural subsoils present, or a permeability no greater than 1x10° cm/sec, whichever is less.		The permeability of the final cover will be equal to or less than the permeability of the existing bottom liner or no greater than 1×10^5 cm/sec, whichever is less. This will be verified during construction per the construction quality assurance plan to be developed in conjunction with the detailed amended closure plan.		
(d)(3)(i)(B) – The infiltration of liquids through the closed CCR unit must be minimized by the use of an infiltration layer than contains a minimum of 18 inches of earthen material.		Infiltration of liquids through the closed CCR unit will be minimized by the placement of a 24-inch thick protective/vegetated soil layer over the Geonet drainage layer.		
(d)(3)(i)(C) — The erosion of the final cover system must be minimized by the use of an erosion layer that contains a minimum of six inches of earthen material that is capable of sustaining native plant growth.		The final cover will include a minimum 24-inch protective/vegetated soil layer that is capable of sustaining native plant growth. The vegetative cover will be regularly maintained to prevent erosion.		
(d)(3)(i)(D) – The disruption of the integrity of the final cover system must be minimized through a design that accommodates settling and subsidence.		The final cover system will be designed to account for expected settlement and subsidence.		

INVENTORY AND AREA ESTIMATES

(b)(1)(iv) - Estimate of the maximum inventory of CCR ever on-site over the active life of the CCR unit

Approx. 10 million cubic yards Approx. 190 acres

CLOSURE SCHEDULE

(b)(1)(vi) – Schedule for completing all activities necessary to satisfy the closure criteria in this section, including an estimate of the year in which all closure activities for the CCR unit will be completed. The schedule should provide sufficient information to describe the sequential steps that will be taken to close the CCR unit, including major milestones ...and the estimated timeframes to complete each step or phase of CCR unit closure.

Note: At the time of this Written Closure Plan, there are no immediate plans to close the Primary Ash Pond. The Primary Ash Pond is currently actively managing CCR wastes generated during operation of the coal-firred power plant. CCR waste is also actively removed from the Primary Ash Pond for off-site beneficial use. This practice is expected to continue after the pond no longer accepts CCR solids. The milestones presented in this plan, therefore, provide an overview of major tasks associated with final closure of the Primary Ash Pond and a schedule relative to the timeframes specified in the rule. This Closure Plan will be amended with more specific information once closure activities have been initiated.

(b)(2) - Initial Written Closure Plan Placed in Permanent Record

By October 17, 2016

CLOSURE PLAN FOR EXISTING CCR SURFACE IMPOUNDMENT 40 CFR §257.102 (b)

Rev 1 Page 2 of 2 January 24, 2018

(e)(1)(ii)—The owner or operator must commence closure of the CCR unit no later than 30 days after the date on which the CCR unit...: Removed the known final volume of CCR from the CCR unit for the purpose of beneficial reuse, which for the purposes of this plan is assumed to be the year 2045. Closure activities will consist of the following components which will be implemented. of beneficial reuse, which for the purposes of this plan is assumed to be the year 2045. Closure activities will consist of the following components which will be implemented between 2045 and 2050:

- 1) §257.102(g) Preparation of Notice of Intent to close a CCR Unit
- 2) Agency coordination
- 3) Mobilization
- 4) Reroute plant process water pipes and dewater and stabilize CCR
- 5) Grading of CCR material to final design grades
- 6) Installation of cap system
- 7) §257.102(h) Preparation of Notification of Closure of a CCR Unit
- 8) §257.102(h)(i) Deed Notation

f(2)(ii)-...the owner or operator must complete closure of the CCR unit: For existing and new CCR surface impoundments and any lateral expansion of a CCR surface impoundment, within five years of commencing closure activities pursuant to...paragraph (e)(2) of thissection.

Final closure of the Primary Ash Pond will occur within 5 years of commencing closure

Certification by qualified professional engineer appended to this plan.

Certification Statement 40 CFR § 257.102 (b)(4) – Written Closure Plan for a CCR Surface Impoundment or Landfill

CCR Unit: Coleto Creek Power, LP; Coleto Creek Power Station; Coleto Creek Primary Ash Pond

I, Daniel Bullock, being a Registered Professional Engineer in good standing in the State of Texas, do hereby certify, to the best of my knowledge, information, and belief that the information contained in this certification has been prepared in accordance with the accepted practice of engineering. I certify, for the above referenced CCR Unit, that the information contained in the written closure plan, dated January 24, 2018, meets the requirements of 40 CFR § 257.102.

1/24/2018

Daniel Bullock, P.E. (TX 82596) Bullock, Bennett & Associates, LLC

Firm Registrations: Engineering F-8542, Geoscience 50127

Certification Statement 40 CFR § 257.102 (d)(3)(iii) – Design of the Final Cover System for a CCR Surface Impoundment or Landfill

CCR Unit: Coleto Creek Power, LP; Coleto Creek Power Station; Coleto Creek Primary Ash Pond

I, Daniel Bullock, being a Registered Professional Engineer in good standing in the State of Texas, do hereby certify, to the best of my knowledge, information, and belief that the information contained in this certification has been prepared in accordance with the accepted practice of engineering. I certify, for the above referenced CCR Unit, that the conceptual-level design of the final cover system as included in the written closure plan, dated January 24, 2018, meets the requirements of 40 *CFR* § 257.102.

B. BULLOC

82596

Daniel B. Sullah

1/24/2018

Daniel Bullock, P.E. (TX 82596) Bullock, Bennett & Associates, LLC

Firm Registrations: Engineering F-8542, Geoscience 50127

40 C.F.R. § 257.102(B)(3): Closure Plan Addendum Coleto Creek Existing CCR Surface Impoundment November 30, 2020

ADDENDUM NO. 1 COLETO CREEK EXISTING CCR SURFACE IMPOUNDMENT CLOSURE PLAN

This Addendum No. 1 to the Closure Plan for Existing Coal Combustion Residuals (CCR) Impoundment for the Coleto Creek Primary Ash Pond at the Coleto Creek Power Station, Revision 1 - January 24, 2018 has been prepared to meet the requirements of Title 40 of the Code of Federal Regulations (40 C.F.R. Section 257.103(f)(2)(v)(D)) as a component of the demonstration that the Coleto Creek Primary Ash Pond qualifies for a site-specific alternative deadline to initiate closure due to permanent cessation of a coal-fired boiler by a certain date.

The Coleto Creek Primary Ash Pond will begin construction of closure by April 17, 2025 and cease receipt and placement of CCR and non-CCR wastestreams by no later than September 17, 2027 as indicated in the Coleto Creek Power Plant Alternative Closure Demonstration dated November 30, 2020. Closure will be completed by October 17, 2028 within the 5-year timeframe included in the Closure Schedule identified in the Coleto Creek Existing CCR Surface Impoundment Closure Plan in accordance with 40 C.F.R. § 257.102(f)(1)(ii).

All other aspects of the Closure Plan remain unchanged.

CERTIFICATION

I, Maureen T. Warren, a Qualified Professional Engineer in good standing in the State of Texas, certify that the information in this addendum is accurate as of the date of my signature below. The content of this report is not to be used for other than its intended purpose and meaning, or for extrapolations beyond the interpretations contained herein.

Maureen T. Warren

Qualified Professional Engineer

117550

Texas

Ramboll Americas Engineering Solutions, Inc., f/k/a O'Brien & Gere Engineers, Inc.

Date: November 30, 2020

CREATE AMAZING.

Burns & McDonnell World Headquarters 9400 Ward Parkway Kansas City, MO 64114 •• 816-333-9400 •• 816-333-3690 •• www.burnsmcd.com